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I dedicate this book to all technical traders, especially newcomers to
the market, and hope that it helps them better understand the tools

at their disposal.
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Preface

Motivation for Writing this Book

Over the course of the last decade, the author of this book has been interested
in the stock return predictability which is one of the most controversial topics
in financial research. The existence of stock return predictability is of great
interest to both practitioners and academics alike. Traditionally, in finance
literature the stock returns were predicted using various financial ratios and
macroeconomic variables. Unfortunately, the evidence of stock return pre-
dictability by either financial ratios or macroeconomic variables is uncon-
vincing. Technical analysis represents another methodology of predicting
future stock returns through the study of past stock prices and uncovering
some recurrent regularities, or patterns, in price dynamics.

Whereas technical analysis has been extensively used by traders for almost a
century and the majority of active traders strongly believe in stock return
predictability, academics had long been skeptical about the usefulness of
technical analysis. Yet, the academics’ attitude toward the technical analysis is
gradually changing. The findings in a series of papers on technical analysis of
financial markets suggest that one should not bluntly dismiss the value of
technical analysis. Recently, we have witnessed a constantly increasing interest
in technical analysis from both practitioners and academics alike. This interest
developed because over the decade of 2000s, that covers two severe stock
market downturns, many technical trading rules outperformed the market by
a large margin.
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One of the basic principles of technical analysis is that “prices move in
trends.” Traders firmly believe that these trends can be identified in a timely
manner and used to generate profits and limit losses. Consequently, trend
following is the most widespread trading strategy; it tries to jump on a trend
and ride it. Specifically, when stock prices are trending upward (downward),
it is time to buy (sell) the stock. The problem is that stock prices fluctuate
wildly which makes it difficult for traders to identify the trend in stock prices.
Moving averages are used to “smooth” the fluctuations in the stock price in
order to highlight the underlying trend. As a matter of fact, a moving average
is one of the oldest and most popular tools used in technical analysis for
detecting a trend.

Over the course of the last few years, the author of this book has conducted
research on the profitability of moving average trading rules. The outcome of
this research was a collection of papers, two of which were published in
scientific journals. The rest of the papers in this collection laid the founda-
tions for this book on market timing with moving averages. In principle, there
are already many books on technical analysis of financial markets that cover
the subject of trading with moving averages. Why a new book on moving
averages? The reasons for writing a new book are explained below.

All existing books on trading with moving averages can be divided into two
broad categories:

1. Books that cover all existing methods, tools, and techniques used in
technical analysis of financial markets (two examples of such books are
Murphy 1999, and Kirkpatrick and Dahlquist 2010). In these books, that
can be called as the “Bibles” of technical analysis, the topic on technical
trading with moving averages is covered briefly and superficially; the
authors give only the most essential information about moving averages
and technical trading rules based on moving averages.

2. Books that are devoted solely to the subject of moving averages (examples
of such books are Burns and Burns 2015, and Droke 2001). These books
are usually written for beginners; the authors cover in all details only the
most basic types of moving averages and technical trading rules based on
moving averages.

Regardless of the book type, since the subject of technical trading with
moving averages is constantly developing, the information in the existing
books is usually outdated and/or obsolete. Thereby the existing books lack
in-depth, comprehensive, and up-to-date information on technical trading
with moving averages.
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Unfortunately, the absence of a comprehensive handbook on technical
trading with moving averages is just one of several issues with the subject. The
other two important issues are as follows:

1. There are many types of moving averages as well as there are many
technical trading rules based on one or several moving averages. As a result,
technical traders are overwhelmed by the variety of choices between dif-
ferent types of trading rules and moving averages. One of the controversies
about market timing with moving averages is over which trading rule in
combination with which moving average(s) produces the best perfor-
mance. The situation is further complicated because in order to compute a
moving average one must specify the size of the averaging window. Again,
there is a big controversy over the optimal size of this window for each
trading rule, moving average, and financial market. The development in
this field has consisted in proposing new ad hoc rules and using more
elaborate types of moving averages in the existing rules without any deeper
analysis of commonalities and differences between miscellaneous choices
for trading rules and moving averages. It would be no exaggeration to say
that the existing situation resembles total chaos and mess from the per-
spective of a newcomer to this field.

2. Virtually, all existing books and the majority of papers on technical trading
with moving averages claim that one can easily beat the market and
become rich by using moving averages. For example, in one popular paper
the author claims that using moving averages in the stock market produces
“equity-like returns with bond-like volatility and drawdowns” (i.e., mov-
ing averages produce stock-like returns with bond-like risk). There are
many similar claims about the allegedly superior performance of moving
average trading strategies. The major problem is that all these claims are
usually supported by colorful narratives and anecdotal evidence rather than
objective scientific evidence. At best, such claims are “supported” by
performing a simple back-test using an arbitrary and short historical
sample of data and reporting the highest observed performance of a trading
rule. Yet, serious researchers know very well that the observed performance
of the best trading rule in a back-test severely overestimates its real-life
performance.

Overall, despite a series of publications in academic journals, modern
technical analysis in general and trading with moving averages in particular
still remain art rather than science. In the absence of in-depth analysis of
commonalities and differences between various trading rules and moving
averages, technical traders do not really understand the response
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characteristics of the trading indicators they use and the selection of a specific
trading rule, coupled with some specific type of a moving average, is made
based mainly on intuition and anecdotal evidence. Besides, there is usually no
objective scientific evidence which supports the claim that some specific
moving average trading strategy allows one to beat the market.

To the best knowledge of the author, there is only one book to date
(Aronson 2010) that conveys the idea that all claims in technical analysis
represent, in principle, scientific testable claims. The book describes carefully
all common pitfalls in back-testing trading rules and presents correct scientific
methods of testing the profitability of technical trading rules. The book
contains a thorough review of statistical principles with a brief case study of
profitability of various technical trading rules (including a few moving average
trading rules) in one specific financial market. Therefore, whereas the book
makes a very good job in explaining how to scientifically evaluate the per-
formance of trading rules, the case study in the book is very limited; the
question of how profitable are the moving average trading rules in various
financial markets remains unanswered.

Book Objectives and Structure

Given the increasing popularity of trading with moving averages, we thought
of writing this book in order to overcome the shortcomings of existing books
and give the readers the most comprehensive and objective information about
this topic. Specifically, the goals of this book are threefold:

1. Provide the in-depth coverage of various types of moving averages, their
properties, and technical trading rules based on moving averages.

2. Uncover the anatomy of market timing rules with moving averages and
offer a new and very insightful reinterpretation of the existing rules.

3. Revisit the myths regarding the superior performance of moving average
trading rules and provide the reader with the most objective assessment
of the profitability of these rules in different financial markets.

This book is composed of four parts and a concluding chapter; each part
consists of two or three chapters:

Part I: This part provides the in-depth coverage of various types of moving
averages and their properties.

x Preface
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Chapter 1: This chapter presents a brief motivation for using moving aver-
ages for trend detection, how moving averages are computed, and their two
key properties: the average lag (delay) time and smoothness. The most
important thing to understand right from the start is that there is a direct
relationship between the average lag time and smoothness of a moving
average.

Chapter 2: This chapter introduces the notion of a general weighted moving
average and shows that each specific moving average can be uniquely char-
acterized by either a price weighting function or a price-change weighting
function. It also demonstrates how to quantitatively assess the average lag
time and smoothness of a moving average. Finally, the analysis provided in
this chapter reveals two important properties of moving averages when prices
trend steadily.

Chapter 3: This chapter presents a detailed review of all ordinary types of
moving averages, as well as some exotic types of moving averages. These
exotic moving averages include moving averages of moving averages and
mixed moving averages with less average lag time. For the majority of moving
averages, this chapter computes the closed-form solutions for the average lag
time and smoothness. This chapter also demonstrates that the average lag
time of a moving average can easily be manipulated; therefore, the notion
of the average lag time has very little to do with the delay time in the
identification of turning points in a price trend.

Part II: This part reviews the technical trading rules based on moving
averages and uncovers the anatomy of these rules.

Chapter 4: This chapter reviews the most common trend-following rules that
are based on moving averages of prices. It also discusses the principles behind
the generation of trading signals in these rules. This chapter also illustrates the
limitations of these rules and argues that the moving average trading rules are
advantageous only when the trend is strong and long lasting.

Chapter 5: This key chapter presents a methodology for examining how the
trading signal in a moving average rule is computed. Then using this
methodology, the chapter examines the computation of trading signals in all
moving average rules and investigates the commonalities and differences
between the rules. The main conclusion that can be drawn from this study is
that the computation of the trading indicator in every rule, based on either
one or multiple moving averages, can equivalently be interpreted as the
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computation of a single weighted moving average of price changes. The
analysis presented in this chapter uncovers the anatomy of moving average
trading rules, provides very useful insights about popular trend rules, and
offers a new reinterpretation of the existing moving average trading rules.

Part III: In this part, we present our methodology for how to scientifically
test the claim that one can beat the market by using moving average trading
rules.

Chapter 6: This chapter starts with a review of transaction costs in capital
markets. Then it demonstrates how to simulate the returns to a moving
average trading strategy in the presence of transaction costs. The following
two cases are considered when a trading indicator generates a sell signal: case
one where the trader switches to cash, and case two where the trader alter-
natively sells short a financial asset.

Chapter 7: This chapter explains how to evaluate the performance of a
trading strategy and how to carry out a statistical test of the hypothesis that a
moving average trading strategy outperforms the corresponding buy-and-hold
strategy. In particular, it argues that there is no unique performance measure,
reviews the most popular performance measures, and points to the limitations
of these measures. The chapter then surveys the parametric methods of
testing the outperformance hypothesis and the current “state of the art”
non-parametric methods.

Chapter 8: Technical traders typically rely on back-testing which is defined as
the process of testing a trading strategy using relevant historical data.
Back-testing usually involves “data mining” which denotes the practice of
finding a profitable trading strategy by extensive search through a vast
number of alternative strategies. This chapter explains that the data-mining
procedure tends to find a strategy which performance benefited most from
luck. As a result, the performance of the best strategy in a back-test is upward
biased. This fact motivates that any back-test must be combined with a
data-mining correction procedure that adjusts downward the estimated per-
formance. Another straightforward method of the estimation of true perfor-
mance of a trading strategy is to employ a validation procedure; this method
is called forward-testing.

Part IV: This part contains case studies of profitability of moving average
trading rules in different financial markets.
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Chapter 9: This chapter utilizes the longest historical sample of data on the
S&P Composite stock index and comprehensively evaluates the profitability
of various moving average trading rules. Among other things, the chapter
investigates the following: which trading rules performed best; whether the
choice of moving average influences the performance of trading rules; how
accurately the trading rules identify the bullish and bearish stock market
trends; whether there is any advantage in trading daily rather than monthly;
and how persistent is the outperformance delivered by the moving average
trading rules. The results of this study allow us to revisit the myths regarding
the superior performance of the moving average trading rules in this
well-known stock market and fully understand their advantages and
disadvantages.

Chapter 10: This chapter tests the profitability of various moving average
trading rules in different financial markets: stocks, bonds, currencies, and
commodities. The results of these tests allow us to better understand the
properties of the moving average trading strategies and find out which trading
rules are profitable in which markets. The chapter concludes with a few
practical recommendations for traders testing the profitability of moving
average trading rules. The analysis presented in this chapter also suggests a
hypothesis about simultaneous existence, in the same financial market, of
several trends with different durations.

Conclusion, Chapter 11: This concluding chapter presents a brief summary
of the key contributions of this book to the field of technical analysis of
financial markets. In addition, the chapter derives an alternative representa-
tion of the main result on the anatomy of moving average trading rules. It is
demonstrated that all these rules predict the future price trend using a simple
linear forecasting model that is identical to models used in modern empirical
finance. Therefore, this alternative representation allows us to reconcile
modern empirical finance with technical analysis of financial markets that uses
moving averages. Finally, this chapter discusses whether the advantages of the
moving average rules, observed using past (historical) data, are likely to persist
in the future.
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Readership and Prerequisites

This book is not for a layman who believes that moving averages offer a
simple, quick, and easy way to riches. This book is primarily intended for a
serious and mathematically minded reader who wants to get an in-depth
knowledge of the subject. Even though, for the sake of completeness of
exposition, we briefly cover all relevant theoretical topics, we do not explain
the basic financial terminology, notions, and jargons. Therefore, this book is
best suited for the reader with an MS degree in economics or business
administration who is familiar with basic concepts in investments and
statistics. Examples of such readers are academics, students at economic
departments, and practitioners (portfolio managers, quants, traders, etc.).
This book is, in principle, also suited for self-study by strongly motivated
readers without prior exposure to finance theory, but in this case the book
should be supplemented by an introductory textbook on investments at least
(an example of such book is Bodie, Kane, and Marcus 2007).

Parts I and II are relatively easy to comprehend. These parts require only
the knowledge of high school mathematics, basically a familiarity with
arithmetic and geometric series and their sums. The material presented in
Parts III and IV of this book makes it necessary to use extensively financial
mathematics and statistics. Without the required prerequisites, the reader can
try to skip Part III of the book and jump directly to Part IV. However, in
order to understand the results reported in Part IV of this book, the reader is
required to have a superficial knowledge of back-tests and forward-tests, and
to understand our notion of “outperformance” which is the difference
between the performances of the moving average trading strategy and the
corresponding buy-and-hold strategy.

Supplementary Book Materials

The author of this book provides two types of supplementary book materials
that are available online on the author’s website http://vzakamulin.
weebly.com/.

The first type of supplementary book materials is interactive Web appli-
cations. Interactivity means that outputs in these applications change
instantly as the user modifies the inputs. Therefore, these applications not
only replicate the illustrations and results provided in this book, but also allow
the user to modify inputs and get new illustrations and results. Last but not
least, these applications offer the user real-time trading signals for some stock
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market indices. There are no prerequisites for using the first type of sup-
plementary book materials.

The results reported in this book were obtained using the open source
programming language R (see https://www.r-project.org/). To let anyone
reproduce some of the results provided in this book, as well as test the
profitability of moving average trading rules using own data, the author
provides the second type of supplementary book materials: two R packages
that include reusable R functions, the documentation that describes how to
use them, and sample data. The first R package is bbdetection that
allows the user to detect bull and bear states in a financial market and to get
the dating and the descriptive statistics of these states. The second R package
is matiming that allows the user to simulate the returns to different moving
average trading rules and to perform both back-tests and forward-tests of the
trading rules. The prerequisites for using the second type of supplementary
book materials are the familiarity with R language and the ability to write R
programs.

Kristiansand, Norway Valeriy Zakamulin
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1
Why Moving Averages?

1.1 Trend Detection by Moving Averages

There is only one way to make money in financial markets and this way is
usually expressed by an often-quoted investment maxim “buy low and sell
high”. The implementation of this maxim requires determining the time when
the price is low and the subsequent time when the price is high (or the reverse
in case of shorting a financial asset). Traditionally, fundamental analysis and
technical analysis are two methods of identifying the proper times for buying
and selling stocks.

Fundamental analysis is based on the idea that at some times the price of a
stock deviates from its true or “intrinsic” value. If the price of a stock is below
(above) its intrinsic value, the stock is said to be “undervalued” (“overvalued”)
and it is time to buy (sell) the stock. Fundamental analysis uses publicly avail-
able information about the company “fundamentals” that can be found in past
income statements and balance sheets issued by the company under investiga-
tion. By studying this information, analysts evaluate the future earnings and
dividend prospects of the company as well as its risk. These estimates are used
to assess the intrinsic value of the company. The intrinsic stock price can be
calculated using the Dividend Discount Model (see, for example, Bodie et al.
2007, Chap. 18) or its modifications.
Technical analysis represents a methodology of forecasting the future price

movements through the study of past price data and uncovering some recurrent
regularities, or patterns, in price dynamics. One of the basic principles of
technical analysis is that certain price patterns consistently reappear and tend
to produce the same outcomes. Another basic principle of technical analysis
says that “prices move in trends”. Analysts firmly believe that these trends
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4 V. Zakamulin

can be identified in a timely manner and used to generate profits and limit
losses. Consequently, trend following is the most widespread market timing
strategy; it tries to jump on a trend and ride it. Specifically, when stock prices
are trending upward (downward), it is time to buy (sell) the stock.

Even though trend following is very simple in concept, its practical realiza-
tion is complicated. One of the major difficulties is that stock prices fluctuate
wildly due to imbalances between supply and demand and due to constant
arrival of new information about company fundamentals. These up-and-down
fluctuationsmake it hard to identify turning points in a trend.Moving averages
are used to “smooth” the stock price in order to highlight the underlying trend.
This methodology of detecting the trend by filtering the noise comes from the
time-series analysis where centered (or two-sided) moving averages are used.
The same methodology is applied for predicting the future stock price move-
ment. However, for the purpose of forecasting, right-aligned (a.k.a. one-sided
or trailing) moving averages are used. These two types of moving averages are
considered below.

1.2 Centered Moving Averages
in Time-Series Analysis

It is relatively easy to detect a trend and identify the turnings points in a trend
in retrospect, that is, looking back on past data. Denote by {P1, P2, . . . , PT } a
series of observations of the closing prices of a stock over some time interval. It
is common to think about the time-series of Pt as comprising two components:
a trend and an irregular component or “noise” (see, for example, Hyndman
and Athanasopoulos 2013, Chap. 6). Then, if we assume an additive model,
we can write

Pt = Tt + It , (1.1)

where Tt is a trend and It is noise. The standard assumption is that noise
represents short-term fluctuations around the trend. Therefore this noise can
be removed by smoothing the data using a centered moving average.

Any moving average of prices is calculated using a fixed size data “window”
that is rolled through time. The length of this window of data, also called
the averaging period (or the lookback period in a trailing moving average), is
the time interval over which the moving average is computed. Denote by n the
size of the averaging window which consists of a center and two halves of size
k such that n = 2k + 1. The computation of the value of a Centered Moving
Average at time t is given by
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MAc
t (n) =

Pt−k + · · · + Pt + · · · + Pt+k

n
= 1

n

k∑

i=−k

Pt+i . (1.2)

The value of the trend component is then the value of the centered moving
average Tt = MAc

t (n).
The size of the averaging window n is selected to effectively remove the

noise in the time-series. Consider two illustrative examples based on using
artificial stock price data depicted in Fig. 1.1. In both examples, the stock price
trend is given by two linear segments. First, the stock price trends upward,
then downward. We add noise to the trend and this noise is given by a high
frequency sine wave. As a result, we construct an artificial time-series of the
stock price according to Eq. (1.1). Observe that the two components of the
price series, Tt and It , are known. The goal of this illustration is to visualize
the shape of a centered moving average and its location relative to the stock
price trend.
The top panel in Fig. 1.1 depicts the noisy price, the (intrinsic) stock price

trend, and the value of the centered moving average computed using a window
of n = 11 price observations. Similarly, the bottom panel in Fig. 1.1 shows the
same price and its intrinsic trend, but this time the centered moving average
is computed using a window of 21 price observations. Notice that a window
of 21 price observations effectively removes the noise in the data series. Even
though the top in the shape of this moving average represents a smoothed
version of the top in the shape of the intrinsic trend, the turning point in the
trend can be easily determined. In contrast, the moving average with a window
of 11 price observations retains some small fluctuations. As a result, in this case
the turning point in the trend is still cumbersome to identify.

Our example reveals two basic properties of a centered moving average.
First, the longer the size of the averaging window, the better a moving averages
removes the noise in a data series and the easier it is to detect turning points in
the trend. Second, regardless of the size of the averaging window, the shape of
a centered moving average follows closely the underlying trend in a data series
and turning points in a centered moving average coincide in time with turning
points in the intrinsic trend.

1.3 Right-Aligned Moving Averages
in Market Timing

Centeredmoving averages are used to detect a trend and identify turning points
in a trend in past data. In market timing, on the other hand, analysts need to
detect a trend and identify turning points in real time. Specifically, at current
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Centered moving average of 11 prices
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Fig. 1.1 Noisy price is smoothed by a centered moving average

time t analysts want to know the direction of the stock price trend. The new
additional problem is that analysts know only the stock price data until t ; the
future stock prices from t + 1 and beyond are unknown. Therefore, at t one
can use only the available data to compute the value of a moving average. In
this case the value of a (Right-Aligned) Moving Average at t is computed as
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MAr
t (n) =

Pt + Pt−1 + · · · + Pt−n+1

n
= 1

n

n−1∑

i=0

Pt−i . (1.3)

A comparison of the formulas for the calculation of the centered and
right-aligned moving averages (given by Eqs. (1.2) and (1.3) respectively)
reveals that the value of the right-aligned moving average at time t equals the
value of the centered moving average at time t−k, where, recall, k denotes the
half-size of the averaging window. Formally, this means the following identity:

MAr
t (n) = MAc

t−k(n).

Thus, a right-aligned moving average represents a lagged version of the cen-
tered moving average computed using the same size of the averaging window.
Therefore a right-alignedmoving average has the same smoothing properties as
those of a centered moving average. Specifically, the longer the size of the aver-
aging window in a right-aligned moving average, the better a moving average
removes the noise in a data series. However, the longer the size of the averaging
window, the longer the lag time. In particular, the lag time is given by

Lag time = k = n − 1

2
. (1.4)

These properties of a right-alignedmoving average are illustrated in Fig. 1.2.
This illustration uses the same artificial series of the stock price and the same
sizes of the averaging window, 11 and 21 price observations, in the computa-
tion of the right-aligned moving average as in Fig. 1.1. Notice that in Fig. 1.2
the shapes of themoving averages of 11 and 21 prices are the same as in Fig. 1.1.
Most importantly, observe that the more effective a right-aligned moving aver-
age smoothes the noise in the stock price data, the longer the lag time. The
longer the lag time, the later a turning point in the stock price trend is detected
by a moving average.

1.4 Chapter Summary

In the rest of the book, we consider only right-aligned moving averages that
are used in timing a financial market. These averages are employed to detect
the direction of the stock price trend and identify turning points in the trend
in real time.
The profitability of a trend following strategy depends on the ability of early

recognition of turning points in the stock price trend. However, since the stock

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



8 V. Zakamulin

Right−aligned moving averages
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Fig. 1.2 Noisy price is smoothed by a right-aligned moving average

price is noisy, the noise complicates the identification of the trend and turning
points in the trend. To remove the noise, analysts use trailing moving averages.
These moving averages have the following two properties. First, the longer the
size of the averaging window, the better a moving average removes the noise in
the stock prices. At the same time, the longer the size of the averaging window,
the longer the lag time between a turning point in the intrinsic stock price
trend and the respective turning point in a moving average.

It is important to keep in mind that a turning point in a trend is identified
with a delay. If analysts want to shorten the delay, they need to use a mov-
ing average with a shorter window size. Since moving averages with shorter
windows remove the noise less effectively, using shorter windows leads to
identification of many false turning points in the stock price trend. Increasing
the size of the averaging window improves noise removal, but at the same time
it also increases the delay time in recognizing the turning points in the stock
price trend.Therefore the choice of the optimal size of the averaging window is
crucial to the success of a trend following strategy.This choice needs to provide
the optimal tradeoff between the lag time and the precision in the detection
of true turnings points in a trend.

Last but not least, it is worth emphasizing that, since a trend is always
recognized with some delay, the success of a trend following strategy also
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depends on the duration of a trend. That is, the duration of a trend should be
long enough to make the trend following strategy profitable.
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2
Basics of Moving Averages

In the preceding chapter we considered the simplest type of a moving average
where equal weights are given to each price observation in the window of data.
This chapter introduces the general weighted moving average and discusses
how to quantitatively assess the two important characteristics of a moving
average: the average lag time and the smoothness.

2.1 General Weighted Moving Average

Moving averages are computed using the averaging window of size n. Specifi-
cally, a moving average at time t is computed using the last closing price Pt and
n − 1 lagged prices Pt−i , i ∈ [1, n − 1]. Generally, each price observation in
the rolling window of data has its own weight in the computation of a moving
average. More formally, a general weighted moving average of price series P at
time t is computed as

MAt (n, P) = w0Pt + w1Pt−1 + w2Pt−2 + · · · + wn−1Pt−n+1

w0 + w1 + w2 + · · · + wn−1
=

∑n−1
i=0 wi Pt−i
∑n−1

i=0 wi
,

(2.1)
where wi is the weight of price Pt−i in the computation of the weighted
moving average. It is worth observing that, in order to compute a moving
average, one has to use at least two prices; this means that one should have
n ≥ 2. Note that when the number of price observations used to compute a
moving average equals one, a moving average becomes the last closing price,
that is, MAt(1, P) = Pt .

© The Author(s) 2017
V. Zakamulin, Market Timing with Moving Averages, New Developments
in Quantitative Trading and Investment, DOI 10.1007/978-3-319-60970-6_2
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12 V. Zakamulin

The formula for a weighted moving average can alternatively be written as

MAt(n, P) =
n−1∑

i=0

ψi Pt−i , (2.2)

where
ψi = wi

∑n−1
j=0 w j

.

Observe that weights ψi are normalized. Specifically, whereas the sum of
weights wi is not equal to one, it is easy to check that the sum of weights
ψi equals one

n−1∑

i=0

ψi = 1.

The set of weights given by either {w0, w1, . . . , wn−1} or {ψ0, ψ1, . . . , ψn−1}
is usually called a (price) “weighting function”. Each type of a moving aver-
age has its own distinct weighting function. The most common shapes of a
weighting function are: equal-weighting of prices, over-weighting the most
recent prices, and hump-shaped form with under-weighting both the most
recent and most distant prices.
The moving average is a linear operator. Specifically, if X and Y are two

time series and a, b, and c are three arbitrary constants, then it is easy to prove
the following property:

MAt (n, aX + bY + c) = a × MAt(n, X) + b × MAt (n, Y ) + c. (2.3)

In the subsequent exposition, as a rule a moving average is computed using
the series of prices P .Therefore, to shorten the notation, we will often drop the
variable P in the notation of a moving average; that is, we will write MAt (n)

instead of MAt (n, P).

2.2 Average Lag Time of a Moving Average

The weighting function of a moving average fully characterizes its properties
and allows us to estimate the average lag time of the moving average. The idea
behind the computation of the average lag time is to calculate the average “age”
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2 Basics of Moving Averages 13

of the data included in themoving average.1 In particular, the price observation
at time t − i has weight wi in the calculation of a moving average and lags
behind the most recent observation at time t by i periods. Consequently, the
incremental delay from observation at t − i amounts to wi × i . The average
lag time is the lag time at which all the weights can be considered to be
“concentrated”. This idea yields the following identity:

(w0 + w1 + w2 + · · · + wn−1)︸ ︷︷ ︸
Sum of all weights

× Lag time

= w0 × 0 + w1 × 1 + w2 × 2 + · · · + wn−1 × (n − 1)
︸ ︷︷ ︸

Weighted sum of delays of individual observations

.

Therefore the average lag time of a weighted moving average can be computed
using the following formula

Lag time(MA) =
∑n−1

i=1 wi × i
∑n−1

i=0 wi
=

n−1∑

i=1

ψi × i. (2.4)

Notice that since the most recent observation has the lag time 0, the weightw0
disappears from the computation of the weighted sum of delays of individual
observations.
The formula for the average lag time can be rewritten as follows. First, we

write
∑n−1

i=1 wi × i as a double sum (we just replace i with
∑i

j=1 1)

n−1∑

i=1

wi × i =
n−1∑

i=1

wi

i∑

j=1

1.

Second, interchanging the order of summation in the double sum above yields

n−1∑

i=1

wi

i∑

j=1

1 =
n−1∑

j=1

n−1∑

i= j

wi .

1A similar idea is used in physics to compute the center of mass and in finance to compute the bond
duration (Macaulay duration).
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14 V. Zakamulin

Finally, we rewrite the formula for the average lag time as

Lag time(MA) =
∑n−1

j=1
∑n−1

i= j wi
∑n−1

i=0 wi
=

n−1∑

j=1

φ j , (2.5)

where the weight φ j is given by

φ j =
∑n−1

i= j wi
∑n−1

i=0 wi
=

n−1∑

i= j

ψ j . (2.6)

The usefulness of Eq. (2.5) will become clear shortly.

2.3 Alternative Representation
of a Moving Average

The alternative representation of a moving average is motivated by the fact
that a series of stock prices can be considered as a dynamic process in time.We
introduce the notation

�Pt−i = Pt−i+1 − Pt−i

which is the change in the stock price over the time interval from t − i to
t − i + 1. Using this notation, we can write

Pt−i = Pt −�Pt−1−�Pt−2−· · ·−�Pt−i = Pt −
i∑

j=1

�Pt− j , i ≥ 1.

The formula for the weighted moving average (given by Eq. (2.1)) can be
rewritten as

MAt(n) =
w0Pt + ∑n−1

i=1 wi

(
Pt − ∑i

j=1 �Pt− j

)

∑n−1
i=0 wi

= Pt −
∑n−1

i=1 wi
∑i

j=1 �Pt− j
∑n−1

i=0 wi
.
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2 Basics of Moving Averages 15

Interchanging the order of summation in the double sum above yields

MAt(n) = Pt −
∑n−1

j=1

(∑n−1
i= j wi

)
�Pt− j

∑n−1
i=0 wi

= Pt −
n−1∑

j=1

φ j�Pt− j , (2.7)

where φ j is given by Eq. (2.6).Therefore, all right-alignedmoving averages can
be represented as the last closing price minus the weighted sum of the previous
price changes. Note that in the ordinary moving averages (to be considered in
the next chapter) the weights are positive, wi > 0 for all i . As a result, in this
case the sequence of weights φ j is decreasing with increasing j

φ1 > φ2 > · · · > φn−1.

Consequently, regardless of the shape of the weighting function for prices wi ,
the weighting function φ j always over-weights the most recent price changes.

In the subsequent exposition, we will call the weighting functionψi (i ≥ 0)
the (normalized) “price weighting function” and the weighting function φ j
( j ≥ 1) the “price-change weighting function”.
The alternative representation of a moving average provides very insightful

information on the relationship between the stock price Pt , the value of the
moving average MAt(n), and the average lag time. Therefore, let us elaborate
more on this.

Equation (2.7) can be rewritten as

Pt − MAt(n) =
n−1∑

j=1

φ j�Pt− j .

This equation implies that the value of the moving average generally is not
equal to the last closing price unless

∑n−1
j=1 φ j�Pt− j = 0. For example, this

happens when the price remains on the same level (the prices move sideways)
in the averaging window. In this case �Pt− j = 0 for all j and, as a result, the
value of the moving average equals the last closing price.

If the prices move upward (downward) such that�Pt− j > 0 (�Pt− j < 0)
for all j , then Pt − MAt (n) > 0 (Pt − MAt(n) < 0). Therefore, when the
prices are in uptrend, the moving average tends to be below the last closing price.
In contrast, when the prices move downward, the moving average tends to be above
the last closing price.The stronger the trend, the larger the discrepancy between
the last closing price and the value of a moving average.
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16 V. Zakamulin

Suppose that the change in the stock price follows a RandomWalk process
with a drift

�Pt− j = E[�P] + σε j , (2.8)

where E[�P] is the expected price change, σ is the standard deviation of
the price change, and ε j is a sequence of independent and identically dis-
tributed random variables with mean zero and unit variance (E[ε j ] = 0,
Var [ε j ] = 1). In this case the expected difference between the last closing
price and the value of the moving average equals

E [Pt − MAt(n)] = E

⎡

⎣
n−1∑

j=1

φ j�Pt− j

⎤

⎦ =
n−1∑

j=1

φ j E[�Pt− j ]

= Lag time(MA) × E[�P], (2.9)

where the last equality follows fromEq. (2.5). In words, the expected difference
between the last closing price and the value of the moving average equals
the average lag time times the average price change. Equation (2.9) is very
insightful and implies that, in periods where variation in�Pt− j is rather small
(for example, when prices are steadily increasing or decreasing), all moving
averages with the same lag time move largely together regardless of the shapes of
their weighting functions and the sizes of their averaging windows.2 This property
will be illustrated a number of times in the subsequent chapter.

It is instructive to illustrate graphically the relationship between the time
series of stock prices, the moving average of prices, and the average lag time.
For the sake of simplicity of illustration, we assume that the stock price steadily
increases between times 0 and t . Specifically, we suppose that the stock price
dynamic is given by

Pt = P0 + �P × t,

where �P > 0 is some arbitrary constant. The value of the moving average
at time t is given by

MAt(n) = Pt −
n−1∑

j=1

φ j�P = P0 + �P

⎛

⎝t −
n−1∑

j=1

φ j

⎞

⎠ . (2.10)

2Note that the average lag time is computed using the sequence of the weights ψi , 1 ≤ i ≤ n − 1. Many
alternative sequences of weights can produce exactly the same value of the average lag time.
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Time

Va
lu

e

Pt

Pt−Lag MAt

Lag time

t−Lag t

Price
Moving average

Fig. 2.1 Illustration of the lag time between the time series of stock prices and the
moving average of prices

In this illustration, the lag time “Lag” between the time series of prices and the
moving average of prices can be defined by the following relationship3

MAt (n) = Pt−Lag.

This gives us the following equality

P0 + �P

⎛

⎝t −
n−1∑

j=1

φ j

⎞

⎠ = P0 + �P(t − Lag).

The result is

Lag =
n−1∑

j=1

φ j ,

which can be considered as an alternative derivation of the formula for the
average lag time of a moving average. Graphically, the relationship between the
stock price, the value of themoving average, and the average lag time is depicted
in Fig. 2.1. It is important to emphasize that this relationship again implies

3In words, “Lag” is the required number of backshift operations applied to the time series of {MAt (n)}
that makes it coincide with the time series of prices {Pt }.
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18 V. Zakamulin

that, when prices increase (or decrease) steadily, then all moving averages, that
have exactly the same average lag time, move together regardless of the shapes
of their weighting functions and the sizes of their averaging windows.

It is worth observing an additional interesting relationship between the
dynamic of the price and the dynamic of a moving average of prices when
prices increase or decrease steadily. Equation (2.10) implies that the change in
the value of a moving average between times t and t + 1 is given by

�MAt (n) = MAt+1(n) − MAt (n) = �P.

This is a very insightful result. In words, this result means that, when prices in-
crease or decrease steadily (meaning that �P is virtually constant), the change
in the value of a moving average equals the price change regardless of the size
of the averaging window and the shape of the weighting function. That is, in this
case both the price and all moving averages (with different average lag times)
move parallel in a graph.

It is important to emphasize that the notion of the “average lag time” should
be understood literally. That is, at each given moment the lag time depends
on the weighting function of the moving average and the price changes in the
averaging window. However, if we average over all specific lag times, then the
average lag time will be given by Eq. (2.4) or alternatively by (2.5). Only in
cases where the prices are steadily increasing or decreasing, the “average lag
time” provides a correct numerical characterisation of the time lag between the
price and the value of the moving average.

2.4 Smoothness of a Moving Average

Besides the average lag time, the other important characteristic of a moving
average is its smoothness. The smoothness of a time series is often evaluated by
analysing the properties of the first difference of the time series. In our context,
to evaluate the smoothness of a moving average MAt (n), we start with the
computation of the first difference

�MAt (n) = MAt+1(n) − MAt (n).

The idea is that the smoother the time series MAt (n) is, the lesser the variation
in its first difference �MAt (n). Using Eq. (2.2), the formula above can be
rewritten as
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2 Basics of Moving Averages 19

�MAt (n) =
n−1∑

i=0

ψi Pt+1−i −
n−1∑

i=0

ψi Pt−i =
n−1∑

i=0

ψi�Pt−i . (2.11)

One possible estimate of the smoothness of a moving average is the variance
of �MAt (n). In this case, small values of variance correspond to smoother
series. If we assume that the change in the stock price follows a RandomWalk
process with a drift given by (2.8), then the variance of �MAt (n) is equal to

Var(�MAt (n)) = σ 2
n−1∑

i=0

ψ2
i = σ 2 × H I (MA), (2.12)

where

H I (MA) =
n−1∑

i=0

ψ2
i

is the well-known Herfindahl index (a.k.a. Herfindahl-Hirschman Index, or
HHI). This index is a commonly accepted measure of market concentration
and competition amongmarket participants.This index is also used tomeasure
the investment portfolio concentration (see, for example, Ivkovic et al. 2008).
Therefore Eq. (2.12) says that the variance of�MAt (n) is directly proportional
to the measure of concentration of weights in the price weighting function of
a moving average and the variance of the price changes.4

The reciprocal of the Herfindahl index, H I−1(MA), computed using the
(normalized) price weighting function of a moving average, represents a very
convenient way to measure the smoothness of a moving average. The reasons
for this are as follows. First, the properties of this index are well known. Second,
to evaluate the smoothness, in this case one needs only to know the weighting
function of a moving average; there is no need to estimate the smoothness
empirically using some particular price series data. Third, in many cases it
is possible to derive a closed-form solution for the smoothness of a specific
moving average.

Using the properties of the Herfindahl index, the lowest smoothness of a
moving average is attained when some ψi = 1 and all other weights are zero;
in this case H I = 1. For some fixed n, the highest smoothness is attained
when all weights are equal; in this case H I = 1

n . That is, equal weighting of

4There is a large strand of econometric literature that demonstrates that volatility of financial assets is
not constant over time. Specifically, there are alternating calm and turbulent periods in financial markets.
Therefore, in real markets the smoothness of a moving average is not constant over time. In particular, the
smoothness improves in calm periods and worsens in turbulent periods.
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20 V. Zakamulin

prices in a moving average produces the smoothest moving average for a given
size n of the averaging window. As expected, when prices are equally weighted,
increasing the size of the averaging window decreases the Herfindahl index and
therefore increases the smoothness of a moving average.

2.5 Chapter Summary

Each specific moving average is uniquely characterized by its price weighting
function. This price weighting function allows us to compute the two central
characteristics of a moving average: the average lag time and smoothness. We
demonstrated that the smoothing properties of a moving average can be evalu-
ated by the inverse of the Herfindahl index. It turns out that both the average
lag time and the Herfindahl index of a moving average are related to the con-
centration of weights in the price weighting function.Whereas the Herfindahl
index directly measures the concentration of weights in the weighting function
(the higher the concentration, the worse the smoothness), the average lag time
provides the exact location of the weight concentration.

At each current time, the value of the moving average of prices generally de-
viates from the last closing price. Our analysis shows explicitly that when stock
prices are steadily trending upward, the moving average lies below the price.
In contrast, when stock prices are steadily trending downward, the moving
average lies above the price.5 On average, the discrepancy between the value of
the moving average and the last closing price equals the average lag time times
the average price change. Only when the prices are trending sideways (that is,
they stay on about the same level) the value of the moving average is close to
the last closing price.
The analysis provided in this chapter reveals two important properties of

moving averages when prices trend steadily. The first property says that in
this case all moving averages with the same average lag time move largely
together (as a single moving average) regardless of the shapes of their weighting
functions and the sizes of their averaging windows. As an immediate corollary
to this property, the behavior of the moving averages with the same average lag
time differs due to their different reactions to the changes in the stock price
trend.The second property says that, when prices trend steadily, both the price
and all moving averages (with different average lag times) move parallel in a
graph regardless of the sizes of their averaging windows and the shapes of their
weighting functions. As an immediate corollary to this property, a change in

5It is worth emphasizing that this relationship holds only when stock prices trend steadily in one direction.
This relationship does not hold when the direction of the trend changes frequently.
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the direction of the price trend causes moving averages with various average
lag times to move in different directions in a graph.
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3
Types of Moving Averages

In the preceding chapter we considered the general weighted moving
average. This chapter aims to give an overview of some specific types of
moving averages. However, since there is a huge amount of different types
of moving averages, and this amount is constantly increasing, it is virtual-
ly impossible to review them all. Therefore, in this chapter we cover in all
details the ordinary moving averages. In addition, we present some examples of
exoticmoving averages:moving averages ofmoving averages andmixedmoving
averages.

3.1 Ordinary Moving Averages

In this section we consider the most common types of moving averages used
to time the market.

3.1.1 Simple Moving Average

The SimpleMoving Average (SMA) computes the arithmetic mean of n prices.
This type of moving average was considered in Chap. 1. For the sake of com-
pleteness of exposition, we repeat how this moving average is computed

SMAt (n) = 1

n

n−1∑

i=0

Pt−i . (3.1)

© The Author(s) 2017
V. Zakamulin, Market Timing with Moving Averages, New Developments
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24 V. Zakamulin

In this moving average, each price observation has the same weight wi = 1
(ψi = 1

n ).
Note that the difference between the values of SMA(n) at times t and t −1

equals

SMAt (n) − SMAt−1(n) = Pt − Pt−n

n
.

Therefore the recursive formula for SMA is given by

SMAt (n) = SMAt−1(n) + Pt − Pt−n

n
. (3.2)

This recursive formula can be used to accelerate the computation of SMA
in practical applications. Specifically, the calculation of SMA according to
formula (3.1) requires n−1 summations and one division; totally n operations.
In contrast, the calculation of SMA according to formula (3.2) requires one
summation, one subtraction, and one division; totally 3 operations regardless
of the size of the averaging window.
The average lag time of SMA is given by (see the subsequent appendix for

the details of the derivation)

Lag time(SMAn) =
∑n−1

i=1 i∑n−1
i=0 1

= 1 + 2 + · · · + (n − 1)

n
= n − 1

2
. (3.3)

The Herfindahl index of SMA equals 1
n ; therefore the smoothness of

SMA(n), in our definition, equals
( 1
n

)−1 = n. Obviously, increasing the size
of the averaging window increases both the smoothness and the average lag
time of SMA.The average lag time of SMA is a liner function of its smoothness

Lag time(SMAn) = 1

2
× Smoothness(SMAn) − 1

2
. (3.4)

3.1.2 Linear Moving Average

The SMA is, in fact, an equally-weightedmoving averagewhere an equal weight
is given to each price observation. Many analysts believe that the most recent
stock prices contain more relevant information on the future direction of the
stock price than earlier stock prices. Therefore, they argue, one should put
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3 Types of Moving Averages 25

more weight on the more recent price observations. Formally, this argument
requires

w0 > w1 > w2 > · · · > wn−1. (3.5)

To correct the weighting problem in SMA, some analysts employ the linearly
weighted moving average.

A Linear (or linearly-weighted) Moving Average (LMA) is computed as

LMAt (n) = nPt + (n − 1)Pt−1 + (n − 2)Pt−2 . . . + Pt−n+1

n + (n − 1) + (n − 2) + · · · + 1
=

∑n−1
i=0 (n − i)Pt−i∑n−1

i=0 (n − i)
.

(3.6)
In the linearly weighted moving average the weights decrease in arithmetic
progression. In particular, in LMA(n) the latest observation has weight n, the
second latest n − 1, etc. down to one.
The sum in the denominator of the fraction above equals

� =
n−1∑

i=0

(n − i) = n(n + 1)

2
.

The difference between the values of LMA(n) at times t and t − 1 equals

(
LMAt (n) − LMAt−1(n)

)
� = nPt − (Pt−1 + Pt−2 + · · · + Pt−n+1 + Pt−n)︸ ︷︷ ︸

Totalt−1

,

where Totalt−1 denotes the time t − 1 sum of the prices in the averaging
window.Therefore the recursive computation of LMA is performed as follows.
First, the new value of LMA is computed

LMAt (n) = LMAt−1(n) + nPt −Totalt−1

�
. (3.7)

Then one needs to update the value of Total (to be used in the computation
of time t + 1 value of LMA)

Totalt = Totalt−1 + Pt − Pt−n. (3.8)

Whereas the calculation of LMA according to formula (3.6) requires 2n − 1
operations (n − 1 multiplications, n − 1 summations, and one division), the
calculation of LMA according to formulas (3.7) and (3.8) requires 6 operations
regardless of the size of the averagingwindow (onemultiplication, one division,
two summations, and two subtractions).
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The average lag time of LMA is given by (see the subsequent appendix for
the details of the derivation)

Lag time(LMAn) =
∑n−1

i=1 (n − i) × i
∑n−1

i=0 (n − i)
= n − 1

3
. (3.9)

Notice that the average lag time of LMA(n) amounts to 2/3 of the average
lag time of SMA(n). Consequently, for the same size of the averaging win-
dow, the lag time of LMA is smaller than that of SMA; this is illustrated in
Fig. 3.1, top panel. Specifically, the plot in this panel demonstrates the values
of SMA(16) and LMA(16) computed using the monthly closing prices of
the S&P 500 index over a 10-year period from January 1997 to December
2006. This specific historical period is chosen for illustrations because over
this period the trend in the S&P 500 index is clear-cut with two major turn-
ing points. Between the turning points, the index moves steadily upward or
downward. Apparently, LMA(16) lags behind the S&P 500 index with a
shorter delay than SMA(16). Observe that most of the time both LMA(16)
and SMA(16) move parallel. This behavior is due to the result, established in
Sect. 2.3, which says that when prices trend steadily, all moving averages move
parallel in a graph.

However, if analysts want amoving averagewith a smaller lag time, instead of
using LMA they can alternatively decrease the window size in SMA.Therefore,
a fair comparison of the properties of the two moving averages requires using
LMA and SMA with the same lag time. The bottom panel in Fig. 3.1 shows
the values of SMA(11) and LMA(16) computed using the same stock index
values. Both of the moving averages have the same lag time of 5 (months).
Rather surprisingly, contrary to the common belief that these two types of
moving averages are inherently different, both of them move close together.
To illustrate the source of confusion and help explain why SMA and LMA

with the same average lag time are very similar, Fig. 3.2, left panel, plots the price
weighting functions of SMA(11) and LMA(16). Obviously, the two price
weighting functions are intrinsically different because seemingly each price lag
contributes generally very differently to the value of a moving average. This
gives rise to the belief that the values of these two moving averages differ a lot.
In contrast, the right panel in the same figure plots the price-change weighting
functions of SMA(11) and LMA(16), and both of these weighting functions
look essentially similar. In particular, the differences in the two price-change
weighting functions are marginal. This helps explain why the two moving
averages move largely right together. Since a price-change weighting function
shows the contribution of each price-change lag to the value of a moving
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Fig. 3.1 LMA and SMA applied to the monthly closing prices of the S&P 500 index

average, it could be argued that a price-change weighting function represents
the dynamic properties of a moving average. Therefore it could be argued
further that a price-change weighting function provides a much more relevant
information about the properties of a moving average than the corresponding
price weighting function.
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Fig. 3.2 Weighting functions of LMA and SMA with the same lag time of 5 periods.
In the price weighting functions, Lag i denotes the lag of Pt−i . In the price-change
weighting functions, Lag j denotes the lag of �Pt− j

Another reason, for why SMA(11) and LMA(16) largely move together
in the bottom panel of Fig. 3.1, is the result established in Sect. 2.3. This
result says that, when prices move steadily upward or downward, all types
of moving averages with the same average lag time have basically the same
values. Therefore, they move virtually together as a single moving average. The
differences between different types of moving averages with the same lag time
appear most often during the periods of their adaptation to the changes in the
trend.
The Herfindahl index of LMA is given by (see the subsequent appendix for

the details of the derivation)

H I (LMAn) = 2

3
× (2n + 1)

n(n + 1)
. (3.10)

For a sufficiently large size of the averaging window,1

H I (LMAn) ≈ 4

3
× 1

n
= 4

3
× H I (SMAn). (3.11)

That is, for the same size of the averaging window, LMA has not only smaller
lag time than that of SMA, but also lower smoothness. Combining Eqs. (3.9)
and (3.11) yields

Lag time(LMAn) ≈ 4

9
× Smoothness(LMAn) − 1

3
. (3.12)

1More formally, when n � 1.
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As for SMA, the average lag time of LMA is a linear function of its
smoothness. The comparison of Eqs. (3.4) and (3.12) reveals that, when the
value of smoothness > 3, for the same smoothness LMA has smaller average
lag time than SMA. Similarly, for the same lag time LMA has higher smooth-
ness than SMA. Therefore, for example, SMA(11) and LMA(16) have the
same average lag time, but LMA(16) is a bit smoother than SMA(11).
To further highlight the difference between SMA and LMA with the same

average lag time, we apply SMA(11) and LMA(16) to the trend component
Tt of the artificial stock price data considered in Chap. 1.We remind the reader
that this artificial stock price trend is given by two linear segments. First,
the stock price trends upward, then downward. Our goal is to visualize the
behavior of SMA(11) and LMA(16) along the stock price trend in general,
and their reactions to a sharp change in the trend in particular. The illustration
is provided in Fig. 3.3. As expected, both SMA(11) and LMA(16) generally
move together; yet there are marginal but noticeable differences in the values
of the two moving averages around their tops. Specifically, when the prices
are trending, both of the moving averages lag behind the trend by 5 periods.
However, while the turning point in SMA(11) lags behind the turning point

SMA and LMA with the same lag time

Va
lu

e

Time

Intrinsic trend
SMA(11)
LMA(16)

Fig. 3.3 Illustration of the behavior of SMA(11) and LMA(16) along the stock price
trend and their reactions to a sharp change in the trend. Note that when prices trend
upward or downward, the values of the two moving averages coincide. The differences
between the values of these two moving averages appear during the period of their
‘‘adaptation’’ to the change in the trend
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in the trend by 5 periods, the turning point in LMA(16) lags behind the
turning point in the trend by 4 periods.2 Consequently, moving averages that
overweight the most recent prices may indeed possess advantages over the
equally-weighted moving average. These advantages consist not only in better
smoothness for the same average lag time, but also in earlier detection of turning
points in a trend. Therefore in market timing applications LMA might have
a potential advantage over SMA. Yet even in ideal conditions, without an
additive noise component, this advantage is marginal. The presence of noise
can totally nullify this advantage.

3.1.3 Exponential Moving Average

A disadvantage of the linearly weighted moving average is that its weighting
scheme is too rigid. This problem can be addressed by using the exponentially
weighted moving average instead of the linearly weighted moving average. An
Exponential Moving Average (EMA) is computed as

EMAt (λ, n) = Pt + λPt−1 + λ2Pt−2 + · · · + λn−1Pt−n+1

1 + λ + λ2 + · · · + λn−1 =
∑n−1

i=0 λi Pt−i∑n−1
i=0 λi

,

(3.13)
where 0 < λ ≤ 1 is a decay factor. When λ < 1, the exponentially weighted
moving average assigns greater weights to the most recent prices. By varying
the value of λ, one is able to adjust the weighting to give greater or lesser weight
to the most recent price. The properties of the exponential moving average are
as follows:

lim
λ→1

EMAt(λ, n) = SMAt (n), lim
λ→0

EMAt(λ, n) = Pt . (3.14)

In words, when λ approaches unity, the value of EMA converges to the value of
the corresponding SMA.When λ approaches zero, the value of EMA becomes
the last closing price.
The average lag time of EMA is given by (see the subsequent appendix for

the details of the derivation)

Lag time(EMAλ,n) = λ − λn

(1 − λ)(1 − λn)
− (n − 1)λn

1 − λn
. (3.15)

2The delay in the identification of the turning point in a trend is estimated numerically as the time
difference between the maximum value of the price and the maximum value of the moving average.
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The average lag time of EMA depends on the value of two parameters: the
decay factor λ and the size of the averaging window n. For example, to reduce
the average lag time, one can either reduce the window size n or decrease
the decay factor λ. Consequently, there are infinitely many combinations of
{λ, n} that produce EMAs with exactly the same average lag time; at the same
time these moving averages have similar type of the weighting function. As a
result, these EMAs possess basically similar properties.
To get rid of the unwarranted redundancy in the parameters of the EMA

with a finite size of the averaging window, analysts use EMA with an infinite
size of the averaging window. Specifically, analysts compute EMA as

EMAt(λ) = Pt + λPt−1 + λ2Pt−2 + λ3Pt−3 + · · ·
1 + λ + λ2 + λ3 + · · · = (1−λ)

∞∑

i=0

λi Pt−i ,

(3.16)
where the last equality follows from the fact that

∑∞
i=0 λi = (1 − λ)−1. For

an infinite EMA, the average lag time is given by

Lag time(EMAλ) = λ

1 − λ
, (3.17)

which is obtained as a limiting case of the average lag time of a finite EMA
(given by Eq. (3.15)) when n → ∞.

Even though an infinite EMA is free from the redundancy of a finite EMA,
using EMA together with the other types of moving averages is inconvenient
because the key parameter of EMA is the decay constant, whereas in both SMA
and LMA the key parameter is the size of the averaging window. To unify the
usage of all types of moving averages, analysts also use the size of the averaging
window as the key parameter in the (infinite) EMA.The idea is that EMAwith
the window size of n should have the same average lag time as SMA with the
same window size. Equating the average lag time of SMA(n) with the average
lag time of EMA(λ) gives

n − 1

2
= λ

1 − λ
.

The solution of this equation with respect to λ yields

λ = n − 1

n + 1
. (3.18)
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As a result, EMA is computed according to the following formula:

EMAt(n) = (1 − λ)

∞∑

i=0

λi Pt−i , where λ = n − 1

n + 1
. (3.19)

The formula for EMA can be rewritten in the following manner

EMAt(n) = (1 − λ)Pt + λ(1 − λ)

∞∑

i=0

λi Pt−1−i .

Since

(1 − λ)

∞∑

i=0

λi Pt−1−i = EMAt−1(n),

the formula for EMAcanbewritten in a recursive form that can greatly facilitate
and accelerate the computation of EMA in practice

EMAt(n) = (1 − λ)Pt + λ EMAt−1(n). (3.20)

In the formula above, (1 − λ) determines the weight of the last closing price
in the computation of the current EMA, whereas λ determines the weight of
the previous EMA in the computation of the current EMA.

In practice, it is more common to write the recursive formula for EMA
using parameter

α = 1 − λ.

The recursive formula for EMA is usually written therefore as

EMAt(n) = α Pt + (1 − α)EMAt−1(n),

and the value of the parameter α, in terms of the window size of SMA with
the same average lag time, is given by

α = 2

n + 1
. (3.21)

Notice that the larger the window size n, the smaller the parameter α. That
is, when n increases, the weight of the last closing price in the current EMA
decreases while the weight of the previous EMA increases. For example, if
n = 9, the value of α equals 0.2 or 20%. Consequently, in the 9-day EMA
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Fig. 3.4 Weighting functions of EMA and SMA with the same lag time of 5 periods.
In the price weighting functions, Lag i denotes the lag of Pt−i . In the price-change
weighting functions, Lag j denotes the lag of �Pt− j . The weights of the (infinite) EMA
are cut off at lag 21

the weight of the last closing price amounts to 20%, while the weight of the
previous EMA equals 80%. If, on the other hand, n = 19, the value of α equals
10%. Thus, in the 19-day EMA the weight of the last closing price amounts
to 10%, while the weight of the previous EMA equals 90%.

Figure 3.4 plots the price weighting functions (left panel) and the price-
change weighting functions (right panel) of SMA(11) and EMA(11). For
EMA, not only the price weighting function is substantially different from
that of SMA, but there are also notable (yet not very significant) differences
between the two price-change weighting functions.

Figure 3.5 plots the values of SMA(11) and EMA(11) computed using
the monthly closing prices of the S&P 500 index over a 10-year period from
January 1997 to December 2006. Both of the moving averages have the same
lag time of 5 (months). The plot in this figure suggests that the values of
SMA(11) and EMA(11) move close together when the stock prices trend
upward or downward. This comes as no surprise given the previously estab-
lished fact that all moving averages with different weighting functions but the
same average lag time move close together when the trend is strong. Only
when the direction of trend is changing, we see that the values of SMA(11)
and EMA(11) start to move slightly apart. The plot in this figure motivates
that, when the direction of trend is changing, EMA follows the trend more
closely than SMA. Therefore, EMA might have a potential advantage over
SMA with the same average lag time.
The Herfindahl index of the infinite EMA is given by (see the subsequent

appendix for the details of the derivation)

H I (EMAn) = 1

n
= H I (SMAn). (3.22)

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



34 V. Zakamulin

Jan 1997 Jan 1999 Jan 2001 Jan 2003 Jan 2005 Dec 2006

80
0

10
00

12
00

14
00

EMA vs. SMA with the same lag time

S&P 500
SMA
EMA

Fig. 3.5 EMA and SMA applied to the monthly closing prices of the S&P 500 index

That is, not only the average lag time of EMA(n) equals the average lag time
of SMA(n), but also the smoothness of both these moving averages is alike
(at least in theory).
To further highlight the difference between SMA and EMA with equal

average lag times, we apply SMA(11) and EMA(11) to the same artificial
stock price trend as in the preceding section. The illustration is provided in
Fig. 3.6. Both of these moving averages have the same average lag time of
5 periods. As expected, when the prices are trending, both of the moving
averages lag behind the trend by 5 periods. However, while the turning point
in SMA(11) lags behind the turning point in the trend by 5 periods, the
turning point in EMA(11) lags behind the turning point in the trend by 3
periods. Consequently, EMAmight have a potential advantage over both SMA
and LMA with the same average lag time.3

3Yet recall that LMA(16), which has the same average lag time as that of EMA(11), has slightly better
smoothing properties than those of EMA(11). Also keep inmind that the delay in turning point detection
is evaluated using a specific artificial stock price trend with one turning point. Therefore the result on the
lag time in turning point identification cannot be generalized for all types of trend changes.
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Fig. 3.6 Illustration of the behavior of SMA(11) and EMA(11) along the stock price
trend and their reactions to a sharp change in the trend

3.2 Moving Averages of Moving Averages

Increasing the size of the averaging window is not the only way to improve
smoothing properties of a moving average. Another possibility is to smooth
a moving average by another moving average. The result of this operation
is a new moving average which is usually called a “double moving average”.
A double moving average can itself be smoothed further by another moving
average producing a “triple moving average”. Such an iterative smoothing can
be repeated a number of times, if desired.

In the rest of this chapter, in order to simplify the notation, we will denote by
MAn(X) (or just by MA(X)) a moving average of a time series X computed
using the window size of n. Using this notation, MAn(MAn(P)) denotes
a double moving average, whereas MAn(MAn(MAn(P))) denotes a triple
moving average of a series of prices.

3.2.1 Triangular Moving Average

A Triangular Moving Average (TMA) is a simple moving average of prices
smoothed by another simplemoving averagewith the same size of the averaging
window:

T MAt(m) = SMAn(SMAn(P)).
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Specifically,

T MAt (m) = SMAt (n) + SMAt−1(n) + · · · + SMAt−n+1(n)

n
= 1

n

n−1∑

i=0

SMAt−i (n).

Notice that, for any moving average with a finite size n of the averaging
window, a double moving average of prices is a new type of a moving av-
erage of prices computed using the window size of m = 2n − 1. This is
because, for example, to compute T MAt (m) one needs to know the value of
SMAt−n+1(n)which is computed using the prices (Pt−n+1, . . . , Pt−2(n−1)).
Thus, T MAt (m) is computed using the prices (Pt , . . . , Pt−2(n−1)).

The average lag time of TMA is given by

Lag time(T MAm) = m − 1

2
= n − 1,

which is twice the average lag time of a single SMAn used to create T MAm .
Therefore, for instance, T MA11 and SMA11 have exactly the same lag time,
but T MA11 is constructed as SMA6(SMA6). In addition, since for a fixed
size n of the averaging window the equal weighting of prices in a moving
average (as in SMA(n)) provides the best smoothness, T MA(n), that has the
same window size as SMA(n), has lower smoothness than that of SMA(n).

Figure 3.7 plots the price weighting functions of SMA11(P) and
SMA11(SMA11(P)). The price weighting function of the triangular mov-
ing average represents an isosceles triangle, hence the name. Figure 3.8 plots
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Fig. 3.7 Price weighting functions of SMA11(P) and SMA11(SMA11(P))
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Fig. 3.8 T MA11(P) and SMA11(P) applied to the monthly closing prices of the S&P 500
index

the values of T MA11(P) and SMA11(P) computed using the monthly clos-
ing prices of the S&P 500 index over a 10-year period from January 1997 to
December 2006. Both of the moving averages have the same average lag time
of 5 (months). The visual inspection of the two moving averages suggests that
the differences between them are marginal; they move really close together. In
addition, both the moving averages have about the same delay in the detection
of turning points.

3.2.2 Double and Triple Exponential Smoothing

Double and triple exponential smoothing is the recursive application of
EMA two and three times respectively. Figure 3.9 plots the price weight-
ing functions of EMA11(P), EMA11(EMA11(P)), and EMA11(EMA11
(EMA11(P))). As the reader may note, the recursive application of a mov-
ing average changes the price weighting function of a moving average. In case
of a moving average with a finite size of the averaging window, the recursive
smoothing decreases the weights of the most recent and the most distant data
(as in TMA). In case of an infinite EMA which heavily overweights the most
recent data, the recursive smoothing decreases the weights of the most recent
data. As a consequence, after a recursive smoothing the price weighting func-
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Fig. 3.9 Price weighting functions of EMA11(P), EMA11(EMA11(P)), and
EMA11(EMA11(EMA11(P))). The weights of the (infinite) EMAs are cut off at
lag 30

tion of the resulting moving average acquires a hump-shaped form. This price
weighting function underweights both the most recent and most distant data.

In addition, the recursive smoothing increases the average lag time of a
moving average. Specifically,

Lag time(EMAn(EMAn)) = n − 1,

which is double the lag time of EMAn . Further,

Lag time(EMAn(EMAn(EMAn))) = 3

2
(n − 1),

which is triple the lag time of EMAn . Last but not least, since the recursive
smoothing decreases the weights of the most recent prices (as compared with
the weighting function of EMA), the recursive smoothing increases the delay
in the detection of turning points (again, as compared with that of EMA).

3.3 Mixed Moving Averages
with Less Lag Time

The smoothness of a moving average is generally inversely related to its average
lag time. That is, as a rule, the better the smoothness of a moving average
is, the large its average lag time. There have been many attempts to improve
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the tradeoff between the smoothness and the average lag time of a moving
average. Some of the examples of moving averages with less average lag time
are considered in this section. The common feature of these moving averages
is that the price weighting functions of these moving averages assign negative
weights to more distant prices in the averaging window.

Specifically, consider the computation of the average lag time of a moving
average given by Eq. (2.4). The average lag time is computed as the weighted
average “age” of data used to compute the moving average of prices. If one
allows negative weights in the price weighting function of a moving average,
one can reduce the average lag time to zero. In principle, one can make the
average lag time to be even negative. In this case it may seem that a moving
average, instead of being a lagging indicator, becomes miraculously a leading
indicator and can easily predict the direction of the future stock price trend.
Unfortunately, miracles do not happen in the real world. In this context, it
is worth repeating that only in cases where the prices are steadily increasing
(or decreasing) over a relatively long period of time, the “average lag time”
provides a correct numerical characterization of the time lag between the price
and the value of the moving average.

In practical applications, a much more relevant characteristic of the prop-
erties of a moving average is its lag time in the detection of turning points
in a price trend. Using negative weights in the price weighting function of a
moving average does not allow one to predict turning points in a trend; turn-
ings points in a trend can be identified only a posteriori; this will be illustrated
shortly. In addition, by means of an example, we will also show that moving
averages with negative weights in the price weighting function, that have the
same delay in turning point identification as that of the respective ordinary
moving averages, have worse smoothing properties. Therefore these moving
averages tend to deteriorate the tradeoff between the smoothness and the lag
time in turning point identification.

3.3.1 Zero Lag Exponential Moving Average

This type of a moving average was suggested by Ehlers and Way (2010). The
idea behind the construction of their Zero Lag Exponential Moving Average
(ZLEMA) is as follows. The regular EMAt(n, P) has the average lag time of
n−1
2 and its value differs from the value of the last closing price Pt due to the

lagging nature of the moving average. The discrepancy between the last closing
price and the value of EMAt(n, P) can be estimated as (for motivation, see
Fig. 2.1)
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Pt − Lagn−1
2

(Pt) ,

where Lag j is the lag operator defined by

Lag j (Pt ) = Pt− j .

In words, Lag j (Pt) is the value of the time series of prices at time t − j .
To push the value of the moving average closer towards the value of the last

closing price, one possibility is to add the estimated discrepancy to the value
of the moving average

EMAn(P) + (
P − Lagn−1

2
(P)

)
.

However, because the price is noisy, in this case the resulting combination loses
smoothness. The solution proposed by Ehlers and Way (2010) is to smooth
both the price and the estimated discrepancy:

ZLEMA = EMAn

(
P + (

P − Lagn−1
2

(P)
))

. (3.23)

Since any moving average is a linear operator (see Eq. (2.3)), the formula for
ZLEMA can be rewritten as

ZLEMA = EMAn

(
2P−Lagn−1

2
(P)

)
= 2×EMAn(P)−EMAn

(
Lagn−1

2
(P)

)
.

Therefore ZLEMA can be considered as a (linear) combination of two EMAs.
Figure 3.10 plots the price weighting function of ZLEMA as well as the

price weighting function of EMA11 used to create this ZLEMA. Notice that
in ZLEMA the weights of the price lags from 5 and beyond are negative.
Figure 3.11 plots the values of ZLEMA(P) and EMA11(P) computed using
the monthly closing prices of the S&P 500 index over a 10-year period from
January 1997 to December 2006. Observe that indeed, due to the presence
of negative weights in its price weighting function, ZLEMA follows the prices
much more closely than the EMA used to create this ZLEMA. However, it
is important to observe that at the same time ZLEMA is less smooth than
EMA. Specifically, period to period variations in ZLEMA are greater than
those in EMA. Whereas the Herfindahl index of EMA11 equals 1

11 = 0.091,
the Herfindahl index of ZLEMA, based on EMA11, equals 0.308 (the latter
index is computed numerically using ZLEMA weights).

Despite the fact that ZLEMA has almost zero average lag time, ZLEMA
identifies turning points in a trend with delay. To illustrate this, we apply
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Fig. 3.10 Price weighting functions of EMA11 and ZLEMA based on EMA11. The
weights of the (infinite) EMAs are cut off at lag 21
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Fig. 3.11 EMA11 and ZLEMA based on EMA11 applied to the monthly closing prices of
the S&P 500 index

EMA11 andZLEMA to the same artificial stock price trend as in the preceding
sections. Our goal in this exercise is to find the lag time of EMA used to
construct ZLEMA such that the resulting ZLEMA and EMA11 have the
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ZLEMA and EMA with the same delay in turning point identification

Va
lu

e

Time

Intrinsic trend
EMA(11)
ZLEMA based on EMA(22)

Fig. 3.12 Illustration of the behavior of EMA11 and ZLEMA (based on EMA22) along
the stock price trend and their reactions to a sharp change in the trend. Both EMA11

and ZLEMA have the same lag time of 3 periods in the detection of the turning point
in the trend

same lag time in the identification of the turning point in the artificial stock
price trend. Previously, we estimated that EMA11 identifies the turning point
in the artificial trend with a delay of 3 periods. We find that ZLEMA based
on EMA22 has the same 3-period delay in the turning point detection. The
illustration of this result is provided in Fig. 3.12. Notice that, when the prices
are trending, ZLEMA (based on EMA22) follows the trend with almost zero
lag, whereas EMA11 has the lag time of 5 periods.However, when the direction
of the trend is sharply changing, ZLEMA needs some time to adapt to the
new direction of the trend. During this “adaptation period”, ZLEMA lags
behind the trend. Consequently, this illustration demonstrates that ZLEMA
has almost zero lag time only when prices are trending steadily over a relatively
long period. Last but not least, ZLEMA based on EMA22 still has a higher
Herfindahl index of 0.154. That is, both EMA11 and ZLEMA based on
EMA22 have the same delay in the identification of the turning point, yet
EMA11 is smoother than ZLEMA. Therefore it is doubtful that ZLEMA
possesses any potential advantages over EMA in practical applications.
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3.3.2 Double and Triple Exponential Moving Average

A Double Exponential Moving Average (DEMA) is a mixed moving average
proposed by Mulloy (1994a). The original idea of Mulloy was to reduce the
lag time of the regular EMA by placing more weight (than in regular EMA)
on the most recent prices. The value of DEMA is computed according to the
following formula

DEMA = 2 × EMAn(P) − EMAn(EMAn(P)). (3.24)

To understand why DEMA has very small average lag time, using the linearity
property of moving averages we rewrite the formula for DEMA as

DEMA = EMAn(2P − EMAn(P)) = EMAn
(
P + (P − EMAn(P))

)
.

In this form, it becomes apparent that DEMA exploits the same idea as that
in ZLEMA. In particular, in order to reduce the average lag time, DEMA
pushes the value of the moving average closer towards the value of the last
closing price. While ZLEMA uses for this purpose the estimated discrepancy
between Pt and EMAt(n, P), DEMA uses the exact discrepancy between
Pt and EMAt(n, P).
Subsequently, Mulloy (1994b) proposed a Triple Exponential Moving

Average (TEMA) with even less average lag time as that of DEMA. The value
of TEMA is computed according to

T EMA = 3×EMAn(P)−3×EMAn(EMAn(P))+EMAn(EMAn(EMAn(P))).

(3.25)
Using the linearity property of moving averages, we can rewrite the formula
for TEMA as

T EMA = EMAn

(
P + 2

(
P − EMAn(P)

) − EMAn
(
P − EMAn(P)

))
.

That is, to reduce the average lag time, TEMA adds the double discrepancy
(between Pt and EMAt(n, P)) to the last closing price, subtracts the smoothed
value of this discrepancy, and performs exponential smoothing of the resulting
time series.

Figure 3.13, left panel, plots the price weighting function of DEMA
as well as the price weighting function of EMA11 used to create this
DEMA. Similarly, Fig. 3.13, right panel, plots the price weighting function
of TEMA as well as the price weighting function of EMA11 used to cre-
ate this TEMA. Figure 3.14 plots the values of EMA11(P), DEMA(P), and
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Fig. 3.13 Price weighting functions of EMA11, DEMA based on EMA11, and TEMA
based on EMA11. The weights of the (infinite) EMAs are cut off at lag 21
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Fig. 3.14 EMA11, DEMA and TEMA (both of them are based on EMA11) applied to the
monthly closing prices of the S&P 500 index

T EMA(P) computed using the monthly closing prices of the S&P 500 index
over a 10-year period from January 1997 to December 2006.

Using a numerical method, we estimate that EMA11, DEMA based on
EMA22, and TEMA based on EMA30 have the same delay in the identifica-
tion of the turning point in the artificial stock price trend. However, where-
as the Herfindahl index of EMA11 equals 0.091, the Herfindahl index of
DEMA based on EMA22 equals 0.110 and the Herfindahl index of TEMA
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based on EMA30 equals 0.130. That is, both DEMA and TEMA have worse
smoothness than EMAwith a comparable delay in the identification of turning
points.

3.3.3 Hull Moving Average

To reduce the average lag time, Hull (2005) proposed a combination of
3 LMAswith different sizes of the averagingwindow.TheHullMovingAverage
(HMA) is computed as

HMA = LMA√
n

(
2 × LMAn

2
(P) − LMAn(P)

)
. (3.26)

HMA is constructed using basically the same idea as that used for the construc-
tion ofZLEMAandDEMA. Specifically, a generalmethod for the construction
of a moving average with less average lag time can be described by the following
formula

MAn

(
2 × MAs(P) − MAl(P)

)
= MAn

(
MAs(P) + (

MAs(P) − MAl(P)
))

where MA denotes a moving average, s denotes the size of a short averaging
window, l denotes the size of a long averaging window (such that l > s), and
n denotes the size of the averaging window for final smoothing. That is, to
construct a moving average with less average lag time, one performs a gentle
(or no) smoothing of the price series using a short window s, adds to the result
a proxy for the discrepancy between the result and the last closing price, and
finally smoothes the aggregate time series. Observe that when MA = EMA,
s = 1, and l = n, then this general method describes the computation of
DEMA. If, in addition, one uses the lagged price series Lagl (P) instead of
MAl(P), then this method describes the computation of ZLEMA.
Figure 3.15 plots the price weighting function of LMA16 as well as the price

weighting function of HMA based on using the same size of the averaging
window of n = 16. Figure 3.16 plots the values of LMA16 and HMA (based
on n = 16) computed using the monthly closing prices of the S&P 500 index
over a 10-year period from January 1997 to December 2006.

Using a numerical method, we estimate that LMA16 and HMA based on
n = 28 have the same delay in the identification of the turning point in the
artificial stock price trend. However, whereas the Herfindahl index of LMA16
equals 0.081, the Herfindahl index of HMA based on n = 28 equals 0.152.
That is, HMA has worse smoothness than LMA with a comparable delay in
the identification of turning points.
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Fig. 3.15 Weighting functions of LMA16 and HMA based on n = 16
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Fig. 3.16 LMA16 and HMA (based on n = 16) applied to the monthly closing prices of
the S&P 500 index

3.4 Chapter Summary

The two important characteristics of a moving average are the lag time and
smoothness. Analysts want a moving average to have short lag time and high
smoothness. This is because the shorter the lag time is, the earlier turning
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points in a trend can be recognized. The trading frequency in a market timing
strategy is inversely related to the smoothness of a moving average. Using a less
smooth moving average results in a larger number of trades and, consequently,
in larger transaction costs. In addition, using amoving average with insufficient
smoothness results in generation of many false signals. Unfortunately, for each
specific type of a moving average, its lag time and smoothness are directly
related. That is, the less the lag time is, the worse the smoothness.

In the preceding chapter we established that each moving average is
uniquely characterized by its price weighting function. The weights in this
function are used to compute the average lag time and smoothness of a mov-
ing average. In this chapter we considered all ordinary moving averages used
by analysts and a few exotic moving averages. The exotic moving averages in-
clude moving averages of moving averages and mixed moving averages with
less lag time. Each of these moving averages (both ordinary and exotic) has
a unique weighting function and, therefore, each of these moving averages
provides different tradeoff between the lag time and smoothness.

We assert that the notion of the “lag time” of a moving average is an elusive
concept. In the preceding chapter we argued that the quantity, known as the
“average lag time” of a moving average, provides a correct numerical charac-
terization of the time lag between the price and the value of a moving average
of prices only when prices are steadily increasing or decreasing. Our analysis
reveals that there are two issues with the notion of the “average lag time”. First,
the average lag time has little to do with the delay in the identification of
turning points in a trend. Second, the average lag time can be easily reduced
(that is, manipulated) by using a weighting function with negative weights.

Using an artificial stock price trendwith one turning point, we demonstrated
that moving averages that overweight the most recent prices provide a better
tradeoff between the smoothness and the delay in turning point identification
than that provided by the moving average with equal weighting of prices.
That is, our illustration suggests that LMA and EMA have some potential
advantages over SMA. Using the same artificial stock price trend, we also
demonstrated that moving averages with reduced (by means of using negative
weights in a weighting function) average lag time have worse tradeoff between
the smoothness and the delay in turning point identification than that provided
by the ordinary moving averages. Unfortunately, these conclusions cannot be
generalized because they were drawn based on a particular example. In each
specific case the delay in turning point identification depends not only on the
price weighting function of a moving average, but also on the strengths of
the trend before and after the turning point and on the amount of noise in
the price series.
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Appendix 3.A: Formulas for Sums of Sequences
and Series

3.A.1 Sequence

A sequence is a set of numbers that are in order. Denote the n-th term of a
sequence by an . Then the sequence is given by

{a1, a2, a3, . . . , an, . . .}.

3.A.2 Arithmetic Sequence

An arithmetic sequence is a sequence of numbers where each term is found by
adding a constant (called the “common difference”) to the previous term. If
the initial term of an arithmetic sequence is a1 and the common difference is
d, then the n-th term of the sequence is given by

an = a1 + (n − 1) × d.

The sum of the first n terms of an arithmetic sequence is given by

Sn =
n∑

i=1

ai = n(a1 + an)

2
. (3.27)

3.A.3 Geometric Sequence

In a geometric sequence each term is found by multiplying the previous term
by a constant (called the “common ratio”). If the initial term of a geometric
sequence is a and the common ratio is r , then the n-th term of the sequence
is given by

an = a × rn−1.

The sum of the first n terms of a geometric sequence is given by

Sn =
n∑

i=1

ai = a

(
1 − rn

1 − r

)
. (3.28)
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If 0 < r < 1, then the sum of the infinite geometric sequence

S∞ =
∞∑

i=1

ai = a

1 − r
. (3.29)

3.A.4 Sequence of Squares

A sequence of squares is given by

{12, 22, 32, . . . , n2, . . .}.

The sum of the first n terms of a sequence of squares is given by

Sn =
n∑

i=1

i2 = n(n + 1)(2n + 1)

6
. (3.30)

Appendix 3.B: Derivation of Formulas for Lag
Times and Herfindahl indices of Some Moving
Averages

3.B.1 Average Lag Time of SMA

Start with

Lag time(SMAn) =
∑n−1

i=1 i∑n−1
i=0 1

= 1 + 2 + · · · + (n − 1)

n
.

The numerator in the fraction above is the sum of the first n − 1 terms of
an arithmetic series with a1 = 1 and d = 1. This sum is given by n(n−1)

2 .
Therefore

Lag time(SMAn) =
n(n−1)

2

n
= n − 1

2
.
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3.B.2 Average Lag Time and Herfindahl Index of LMA

The average lag time of LMA is computed according to

Lag time(LMAn) =
∑n−1

i=1 (n − i) × i
∑n−1

i=0 (n − i)
= n

∑n−1
i=1 i − ∑n−1

i=1 i
2

∑n
i=1 i

.

We need to derive closed-form expressions for three sums in this formula,
where two of them are sums of arithmetic sequences and one of them is a sum
of a sequence of squares. The derivations give

n∑

i=1

i = n(n + 1)

2
,

n−1∑

i=1

i = n(n − 1)

2
,

n−1∑

i=1

i2 = n(n − 1)(2n − 1)

6
.

Putting all this together gives

Lag time(LMAn) =
n(n−1)n

2 − n(n−1)(2n−1)
6

n(n+1)
2

= n − 1

3
.

The Herfindahl index of LMA is computed according to

H I (LMAn) =
∑n−1

i=0 (n − i)2
(∑n−1

i=0 (n − i)
)2 =

∑n
i=1 i

2

(∑n
i=1 i

)2 .

The formula for the sum in the denominator of this fraction is derived above.
The formula for the sum in the numerator is given by (3.30). Therefore

H I (LMAn) =
n(n−1)(2n−1)

6(
n(n+1)

2

)2 = 2

3
× (2n + 1)

n(n + 1)
.

3.B.3 Average Lag Time and Herfindahl Index of EMA

The average lag time of EMA is computed according to

Lag time(EMAn) =
∑n−1

i=1 λi × i
∑n−1

i=0 λi
.
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The denominator in the fraction above is the sum of the first n terms of a
geometric series with a = 1 and r = λ. This sum is given by 1−λn

1−λ
. Remains

to derive the closed-form expression for the sum in the numerator:

n−1∑

i=1

λi × i = λ + 2λ2 + 3λ3 + · · · + (n − 1)λn−1 =
n−1∑

i=1

n−1∑

j=i

λ j =
n−1∑

i=1

λi − λn

1 − λ

= 1

1 − λ

(
n−1∑

i=1

λi −
n−1∑

i=1

λn

)
= 1

1 − λ

(
λ − λn

1 − λ
− (n − 1)λn

)
.

The final expression for the average lag time

Lag time(EMAn) =
1

1−λ

(
λ−λn

1−λ
− (n − 1)λn

)

1−λn

1−λ

= λ − λn

(1 − λ)(1 − λn)
− (n − 1)λn

1 − λn
.

The weighting function of the infinite EMA is given by

ψi = αλi , α = 1 − λ, i ∈ {0, 1, 2, . . .}.
The Herfindahl index of the infinite EMA is computed according to

H I (EMA∞) =
∞∑

i=0

ψ2
i =

∞∑

i=0

α2λ2i .

The sum of this infinite geometric sequence is computed according to Eq.
(3.29) with a = α2 and r = λ2. Therefore

H I (EMA∞) = α2

1 − λ2
= α

1 + λ
.

Since in practice the values of the parameters are given by

α = 2

n + 1
, λ = n − 1

n + 1
,

the formula for the Herfindahl index of the infinite EMA becomes

H I (EMA∞) =
2

n+1

1 + n−1
n+1

= 2

2n
= 1

n
.
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Part II

Trading Rules and Their Anatomy
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4
Technical Trading Rules

4.1 Trading Signal Generation

A trend following strategy is typically based on switching between the mar-
ket and the cash depending on whether the market prices trend upward or
downward. Specifically, when the strategy identifies that prices trend upward
(downward), it generates a Buy (Sell) trading signal. A Buy signal is a signal
to invest in the stocks (or stay invested in the stocks), whereas a Sell signal is a
signal to sell the stocks and invest in cash (or stay invested in cash).1 Often, a
“trading rule” represents a verbal description of the trading signal generation
process in a specific strategy. The technical trading rules, considered in this
book, use moving averages to give specific signals. An example of a trading rule
of this type is as follows: buy when the last closing price is above the 200-day
simple moving average; otherwise, sell. However, there are various alternative
technical trading rules based on moving averages of prices.

Formally, in each technical trading rule the generation of a trading signal is
a two-step process. At the first step, the value of a technical trading indicator
is computed using the past prices including the last closing price

IndicatorT R
t = f (Pt , Pt−1, Pt−2, . . .),

where T R denotes the trading rule and f (·) denotes the function that specifies
how the value of the technical trading indicator is computed. At the second
step, the value of the technical indicator is translated into a trading signal.

1The other, less typical strategy, is to short the stocks when a Sell signal is generated.

© The Author(s) 2017
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In all market timing rules considered in this book, a Buy signal is generated
when the value of the technical trading indicator is positive. Otherwise, a Sell
signal is generated. Thus,

Signalt+1 =
{
Buy if IndicatorT R

t > 0,

Sell if IndicatorT R
t ≤ 0.

It is worth emphasising that trading signal Signalt+1 is generated at the end of
period t and refers to period t + 1. If, for example, the trading signal is Buy,
this means that a trader buys a financial asset at the period t closing price and
holds it over the subsequent period t + 1. If the trader owns this asset over
period t , he keeps its possession over the subsequent period.

4.2 Momentum Rule

We start with the Momentum (MOM) rule which seemingly has nothing
to do with moving averages. However, in the subsequent chapter we show
that this rule is inherently related to the rules based on moving averages. The
Momentum rule represents the simplest and most basic market timing rule.
In this rule, the last closing price Pt is compared with the closing price n − 1
periods ago,2 Pt−n+1. A Buy signal is generated when the last closing price is
greater than the closing price n − 1 periods ago. Implicitly, this rule assumes
that if market prices have been increasing (decreasing) over the last n − 1
periods, the prices will continue to increase (decrease) over the subsequent
period. In other words, the (n−1)-period trend will continue in the future. In
the scientific literature, the advantages of theMomentum rule are documented
by Moskowitz, Ooi, and Pedersen (2012). In the popular literature, the use of
this rule is advocated by Antonacci (2014).

Formally, the technical trading indicator for the Momentum rule is
computed as

IndicatorMOM(n)
t = MOMt(n) = Pt − Pt−n+1. (4.1)

Figure 4.1, bottom panel, plots the values of the technical trading indicator
of theMOM(200) rule computed using the daily prices of the S&P 500 index
over the period from January 1997 to December 2006. The top panel in this
figure plots the values of the index. The shaded areas in this plot indicate the
periods where this rule generates a Sell signal.

2In our notation, n denotes the size of the window used to compute a trading indicator. The most recent
price observation in a window is Pt , whereas the most distant price observation in a window is Pt−n+1.
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Trading with 200−Day Momentum

Fig. 4.1 Trading with 200-day Momentum rule. The top panel plots the values of the
S&P 500 index over the period from January 1997 to December 2006. The shaded areas
in this plot indicate the periods where this rule generates a Sell signal. The bottom
panel plots the values of the technical trading indicator

4.3 Moving Average Change of Direction Rule

We proceed to the Moving Average Change of Direction (�MA) rule. Even
though the use of this rule is not widespread among traders, the idea behind
this rule is based on a straightforward principle: if market prices are trending
upward (downward), the value of a moving average of prices tends to increase
(decrease). In this rule, the most recent value of a moving average is compared
with the value of this moving average in the preceding period. A Buy signal
is generated when the value of a moving average has increased over the last
period.

Formally, the technical trading indicator for the Moving Average Change
of Direction rule is computed as

Indicator�MA(n)
t = MAt(n) − MAt−1(n). (4.2)

Figure 4.2, bottom panel, plots the values of the technical trading indicator
of the �EMA(200) rule computed using the daily prices of the S&P 500
index over the period from January 1997 to December 2006. The top panel
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Trading Based on the Change in 200−Day Exponential Moving Average

Fig. 4.2 Trading based on the change in 200-day EMA. The top panel plots the values
of the S&P 500 index over the period from January 1997 to December 2006, as well as
the values of EMA(200). The shaded areas in this plot indicate the periods where this
rule generates a Sell signal. The bottom panel plots the values of the technical trading
indicator

in this figure plots the values of the index and the 200-day EMA. The shaded
areas in this plot indicate the periods where this rule generates a Sell signal.

4.4 Price Minus Moving Average Rule

The PriceMinusMoving Average (P-MA) rule is the oldest and one of themost
popular trading rules that use moving averages. Gartley (1935) is regarded
as the pioneering book where the author laid the foundations for technical
trading based on moving averages of prices. In the same book, the author
documented the profitability of trading with 200-day SMA. In the scientific
literature, the superiority of the 200-day SMA strategy (over the corresponding
buy-and-hold strategy)was documented, among others, byBrock, Lakonishok,
and LeBaron (1992), Siegel (2002), Okunev andWhite (2003), Faber (2007),
Gwilym, Clare, Seaton, and Thomas (2010), Kilgallen (2012), Clare, Seaton,
Smith, and Thomas (2013), and Pätäri and Vilska (2014).
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The principle behind this rule is based on the lagging property of a moving
average. Specifically, in Chap. 2 we showed explicitly that, when stock prices
are trending upward, themoving average lies below the price. In contrast, when
stock prices are trending downward, the moving average lies above the price.
Therefore, to identify the direction of the trend, in this rule the last closing
price is compared with the value of a moving average. A Buy signal is generated
when the last closing price is above the moving average. Otherwise, if the last
closing price is below the moving average, a Sell signal is generated. Formally,
the technical trading indicator for the Price Minus Moving Average rule is
computed as

IndicatorP-MA(n)
t = Pt − MAt (n).

Whereas in the Moving Average Change of Direction rule any type of a
moving average can be used in principle, in the Price Minus Moving Average
rule one needs a moving average that clearly lags behind the time series of
prices. Therefore, in this rule, either ordinary moving averages or moving
averages of moving averages are used. Typically, traders use SMA in this rule.
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Trading with 200−Day Simple Moving Average

Fig. 4.3 Trading with 200-day Simple Moving Average. The top panel plots the values
of the S&P 500 index over the period from January 1997 to December 2006, as well as
the values of SMA(200). The shaded areas in this plot indicate the periods where this
rule generates a Sell signal. The bottom panel plots the values of the technical trading
indicator
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Figure 4.3, bottom panel, plots the values of the technical trading indicator
of the P − SMA(200) rule computed using the daily prices of the S&P 500
index over the period from January 1997 to December 2006. The top panel
in this figure plots the values of the index and the values of the 200-day SMA.
The shaded areas in this plot indicate the periods where this rule generates a
Sell signal.

4.5 Moving Average Crossover Rule

Most analysts argue that the price is noisy and the PriceMinusMoving Average
rule produces many false signals. They suggest to address this problem by
employing two moving averages in the generation of a trading signal: one
shorter average with window size of s and one longer average with window
size of l > s. This technique is called the Moving Average Crossover (MAC)
rule (a.k.a. Double Crossover Method). As a matter of fact, the MAC rule
was considered already in Gartley (1935). In this case the technical trading
indicator is computed as

IndicatorMAC(s,l)
t = MACt (s, l) = MAt(s) − MAt (l). (4.3)

It is worth noting the obvious relationship

IndicatorMAC(1,n)
t = IndicatorP-MA(n)

t .

In words, the Moving Average Crossover rule reduces to the Price Minus
Moving Average rule when the size of the shorter averaging window reduces
to one.

A crossover occurs when a shorter moving average crosses either above or
below a longer moving average. The former crossover is usually dubbed as a
bullish crossover or a “golden cross”. The latter crossover is usually dubbed
as a bearish crossover or a “death cross”. The most typical combination in
trading is to use two SMAs with window sizes of 50 and 200 days. Other types
of moving averages can also be used in the MAC rule. However, the longer
moving average must be of a type that clearly lags behind the price series.
A shorter moving average can be of any type including a mixed moving average
with less lag time.

Figure 4.4, bottom panel, plots the values of the technical trading indicator
of theMAC(50,200) rule computedusing the daily prices of the S&P500 index
over the period from January 1997 to December 2006. The top panel in this
figure plots the values of the index and the values of 50- and 200-day SMAs.
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Fig. 4.4 Trading with 50/200-day Moving Average Crossover. The top panel plots the
values of the S&P 500 index over the period from January 1997 to December 2006, as
well as the values of SMA(50) and SMA(200). The shaded areas in this plot indicate the
periods where this rule generates a Sell signal. The bottom panel plots the values of
the technical trading indicator

The shaded areas in this plot indicate the periods where this rule generates
a Sell signal. It is instructive to compare the number of Sell signals in the
P-SMA(200) rule (illustrated in Fig. 4.3) with the number of Sell signals in the
MAC(50,200) rule (illustrated in Fig. 4.4). Whereas over the 10-year period
1997–2006 the P-SMA(200) rule generated 40 Sell signals, theMAC(50,200)
rule generated only 5 Sell signals. That is, replacing the P-SMA(200) rule with
the MAC(50,200) rule produces an impressive 8-fold reduction in transaction
costs.3

4.6 Using Multiple Moving Averages

If using two moving averages is better than one, then maybe using three or
more is even better? Some analysts think so and use multiple moving averages.

3Note that this 8-fold reduction in transaction costs is achieved only when daily data are used. At a weekly
or monthly frequency, the reduction in transaction costs is much lower.
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Fig. 4.5 Illustration of a moving average ribbon as well as the common interpretation
of the dynamics of multiple moving averages in a ribbon

This technique is often called a moving average ribbon.4 For the sake of illus-
tration, Fig. 4.5 plots the daily prices of the S&P 500 index over the period
from January 1996 to December 1996 as well as a moving average ribbon
created using 50-, 100-, and 150-day SMAs. Analysts use ribbons to judge
the strength of the trend. Ribbons are also used to identify the trend reversals.
The common interpretation of the dynamics of multiple moving averages in a
ribbon is as follows:

• When all moving averages are moving in the same direction (that is,
parallel), the trend is said to be strong because all of them are largely in
agreement.

• When moving averages in a ribbon start to converge or diverge, a trend
change has already begun to occur.

• When all moving averages converge and fluctuate more than usual, the
price moves sideways.

As a matter of fact, the dynamics of multiple moving averages in a ribbon
satisfy the property of moving averages established in Chap. 2. This property

4See also Guppy (2007) where the author presents his Guppy Multiple Moving Average indicator based
on 6 short-term moving averages and 6 long-term moving averages.
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says that, when prices trend steadily, all moving averages move parallel in a
graph. A change in the direction of the price trend causes moving averages
with various average lag times to move in different directions. Therefore, when
analysts observe that all moving averages move parallel, this only means that
the prices have been steadily trending in the recent past. If, for example, after
a period of moving upward in the same direction, the moving averages in a
ribbon begin to converge, this means that shorter (and faster) moving averages
start to react to a decrease in the price, while longer (and slower) moving
averages continue to move upward through inertia.

4.7 Moving Average Convergence/Divergence
Rule

A different approach to the generation of trading signals is proposed by Gerald
Appel. Specifically, he proposed theMoving Average Convergence/Divergence
(MACD) rule which is a combination of three EMAs.5 The first step in the
application of this rule is to compute the regular MAC indicator using two
EMAs

MACt (s, l) = EMAt(s) − EMAt(l).

Recall that in the regular MAC rule a Buy signal is generated when the shorter
moving average is above the longer moving average. In the late 1970s, Gerald
Appel suggested to generate aBuy (Sell) signalwhenMAC increases (decreases).
Specifically, in this case a Buy (Sell) signal is generated when the shortermoving
average increases (decreases) faster than the longermoving average. In principle,
in this approach the generation of a trading signal can be done similarly to that
in the Moving Average Change of Direction rule

Indicator�MAC(s,l)
t = MACt (s, l) − MACt−1(s, l).

Apparently, Gerald Appel noticed that the �MAC rule generates many false
signals. In order to reduce the number of false signals, Gerald Appel suggested
additionally that a directional movement in MAC must be confirmed by a
delayed and smoothed version of MAC. As a result, in the MACD rule the
technical trading indicator is computed as

IndicatorMACD(s,l,n)
t = MACt (s, l) − EMAt(n, MAC(s, l)). (4.4)

5For a detailed presentation of the MACD rule, see Appel (2005).
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Trading with 12/26/9−Day Moving Average Convergence/Divergence

Fig. 4.6 Trading with 12/29/9-day Moving Average Convergence/Divergence rule. The
top panel plots the values of the S&P 500 index and the values of 12- and 29-day EMAs.
The shadedareas in this panel indicate theperiodswhere this rule generates a Sell signal.
The middle panel plots the values of MAC(12,29) and EMA(9,MAC(12,29)). The bottom
panel plots the values of the technical trading indicator of the MACD(12,29,9) rule

The principle behind the computation of the trading indicator of the MACD
rule is the same as that in the Price Minus Moving Average rule. In particular,
if MAC is trending upward (downward), a moving average of MAC tends to
be below (above) MAC.

Figure 4.6, bottom panel, plots the values of the technical trading indicator
of the MACD(12,29,9) rule6 computed using the daily prices of the S&P
500 index over the period from April 1998 to December 1998. The top panel

6When traders use the MACD rule, the most popular combination in practice is to use moving averages
of 12, 29, and 9 days.

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



4 Technical Trading Rules 65

in this figure plots the values of the index as well as the values of 12- and
29-day EMAs. The shaded areas in this plot indicate the periods where this
rule generates a Sell signal. The middle panel in this figure plots the values of
the MAC(12,29) and the EMA(9,MAC(12,29)).

It is worth noting that the MACD rule, as its name suggests, is devised to
generate trading signals when the two moving averages in the MAC indica-
tor either converge or diverge. As a result, the trading signals are generated
when the trend either strengthens or weakens. For example, when the price
moves upward with an increasing speed, the shorter moving average increases
faster than the longer moving average. If the shorter moving average is locat-
ed above (below) the longer moving average, the two moving averages diverge
(converge). Because the value of theMAC increases, theMACD rule generates
a Buy signal regardless of the location of the shorter moving average relative to
the location of the longer moving average.

Last but not least, it is important to emphasize that, since the MACD rule
is devised to react to the changes in the price trend, the MACD rule is most
suited when the price trend often changes its direction. In contrast, when prices
trend steadily, both the moving averages move parallel. In this case even small
changes in the price dynamics are able to generate lots of false trading signals.

4.8 Limitations of Moving Average
Trading Rules

When prices trend steadily upward or downward, moving averages easily
identify the direction of the trend. In these cases, all moving average trad-
ing strategies generate correct Buy and Sell trading signals, albeit with some
delay. However, as it was observed already in Gartley (1935), when prices trend
sideways, moving average strategies tend to generate many false signals, other-
wise known as “whipsaws”. The reason for these whipsaw trades are considered
in Chap. 2. Specifically, in this chapter we showed explicitly that, when stock
prices trend sideways, the value of a moving average is close to the last closing
price. As a result, even small fluctuations in the price may result in a series of
unnecessary trades.
To demonstrate this issue, an illustration is provided in Fig. 4.7. In particular,

this figure plots the daily prices of the S&P 500 index over the period from
July 1999 to October 2000 as well as the values of 200-day SMA. During this
period, that lasted 15months, the P-SMA(200) rule generated 13 Sell signals.
All of themwere quickly reversed and, therefore, these Sell signals did not work
out and resulted in a series of small losses.
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Fig. 4.7 Trading with 200-day Simple Moving Average. The figure plots the values of
the S&P 500 index over the period from July 1999 to October 2000, as well as the values
of SMA(200). The shaded areas in this plot indicate the periodswhere this rule generates
a Sell signal

There are several remedies that allow a trader to reduce the number of
whipsaw trades. One possibility is to use the MAC rule. For example, over
the same period as that in Fig. 4.7, the MAC(50,200) rule did not generate a
single Sell signal.The other possibility to reduce the number of whipsaw trades
is to use a Moving Average Envelope. Specifically, a moving average envelope
consists of two boundaries above and below a moving average. The distance
from the moving average and a boundary of the envelope is usually specified
as a percentage (for example, 1%). As long as the price lies within these two
boundaries, no trading takes place. A Buy (Sell) signal is generated when the
price crosses the upper (lower) boundary of the envelope. Formally, denote by
MAt (n) the moving average of prices over a window of size n and by p the
envelope percentage. The upper and lower boundaries of the moving average
envelope are computed by

Lt = MAt(n) × (1 − p), Ut = MAt(n) × (1 + p).
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Mathematically, the trading signal is generated according to:

Signalt+1 =

⎧⎪⎨
⎪⎩
Buy if Pt > Ut ,

Sell if Pt < Lt ,

Signalt if Lt ≤ Pt ≤ Ut .

Notice that, when the price lies within the two boundaries, the trading signal
for the period t + 1 equals the trading signal for the previous period t . For
example, when the price crosses (from below to above) the upper boundary, a
Buy signal is generated. The trading signal remains Buy until the price crosses
(from above to below) the lower boundary.
The other serious limitation of all moving average trading rules arises from

the lagging nature of a moving average. Specifically, a turning point in a trend
is always recognized with some delay. Therefore, in order for a trend following
strategy to generate profitable trading signals, the duration of a trend should
be long enough.
To illustrate this point, Fig. 4.8 plots the daily prices of the S&P 500 index

over the whole year of 1998, as well as the values of 50- and 200-day SMAs.
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Fig. 4.8 Tradingwith 50/200-dayMovingAverage Crossover. The figure plots the values
of the S&P 500 index over the period from January 1998 to December 1998, as well as
the values of 50- and 200-day SMAs. The shaded area in this plot indicates the period
where this rule generates a Sell signal
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This particular period covers the 1998 Russian financial crisis and the US stock
market reaction to this crisis. Specifically, the S&P 500 index reacted to this
crisis beginning from 18 of July 1998. That is, 17 of July 1998 was a divider
between a bullish and a bearish trend. However, the bear market that began on
18 of July lasted for less than 3months. The S&P 500 index started to recover
beginning from 8 of October 1998. Yet, the most popular among practitioners
MAC(50,200) rule generated a Sell signal only on 2 of October 1998, at the
end of the bear market. The subsequent Buy signal was generated on 11 of
December 1998. Thus, because both Sell and Buy signals were generated with
a delay, virtually this whole “Sell” period overlapped with the bull market. The
traders who used this rule suffered heavy losses because they were forced to
“sell low and buy high”.

Unfortunately, no remedy exists to deal with the lagging property of a mov-
ing average. It is worth noting that all techniques that reduce the number of
whipsaw trades usually achieve that at the expense of increasing the delay in
turning point identification.

4.9 Chapter Summary

The success of a trend following strategy depends on its ability to timely identify
the direction of the trend in prices. However, fluctuations in prices make it
difficult to recognize the direction of the price trend.Moving averages are often
used to smooth these fluctuations in order to highlight the underlying trend.

Even though the concept of trend following is simple (“jump on a trend and
ride it”), there is no unique practical realization of a trend following strategy.
There are trend following rules that do not employ moving averages. There are
trend following rules that use only one moving average. But even in this case,
there are two possible methods of generation of a Buy signal: either when the
value of a moving average increases, or when the value of a moving average
lies below the price. In addition, there are trend following rules that employ
two, three, and even multiple moving averages. As a rule, the supplementary
moving averages are used to improve the performance of a moving average
trading strategy.
The moving average trading strategies are advantageous when the trend

is strong and long-lasting. However, the advantages of the moving average
strategies may disappear completely when the trend is weak. Due to the lagging
nature of any moving average, the advantages of the moving average strategies
may disappear even if the trend is strong but short-lasting.

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



4 Technical Trading Rules 69

References

Antonacci, G. (2014). Dual momentum investing: An innovative strategy for higher
returns with lower risk. McGraw-Hill Education.

Appel, G. (2005). Technical analysis: Power tools for active investors. FT Prentice Hall.
Brock, W., Lakonishok, J., & LeBaron, B. (1992). Simple technical trading rules and

the stochastic properties of stock returns. Journal of Finance, 47 (5), 1731–1764.
Clare, A., Seaton, J., Smith, P. N., &Thomas, S. (2013). Breaking into the blackbox:

Trend following, stop losses and the frequency of trading—the case of the S&P500.
Journal of Asset Management, 14 (3), 182–194.

Faber, M. T. (2007). A quantitative approach to tactical asset allocation. Journal of
Wealth Management, 9 (4), 69–79.

Gartley, H. M. (1935). Profits in the stock market. Lambert Gann Pub.
Guppy, D. (2007). Trend trading: A seven step approach to success. Wrightbooks.
Gwilym, O., Clare, A., Seaton, J., & Thomas, S. (2010). Price and momentum

as robust tactical approaches to global equity investing. Journal of Investing,
19 (3), 80–91.

Kilgallen, T. (2012). Testing the simple moving average across commodities, global
stock indices, and currencies. Journal of Wealth Management, 15 (1), 82–100.

Moskowitz, T. J., Ooi, Y. H., & Pedersen, L. H. (2012). Time series momentum.
Journal of Financial Economics, 104 (2), 228–250.

Okunev, J., &White, D. (2003). Domomentum-based strategies still work in foreign
currency markets? Journal of Financial and Quantitative Analysis, 38(2), 425–447.

Pätäri, E., & Vilska, M. (2014). Performance of moving average trading strategies
over varying stock market conditions: The finnish evidence. Applied Economics,
46 (24), 2851–2872.

Siegel, J. (2002). Stocks for the long run. McGraw-Hill Companies.

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



5
Anatomy of Trading Rules

5.1 Preliminaries

In our context, a technical trading indicator can be considered as a combi-
nation of a specific technical trading rule with a particular moving average of
prices. In the preceding chapters of this book we show that there are many
technical trading rules, as well as there are many popular types of moving
averages. As a result, there exist a vast number of potential trading indica-
tors based on moving averages of prices. So far, the development in this field
has consisted in proposing new ad-hoc trading rules and using more elabo-
rate types of moving averages in the existing rules. Each new proposed rule
(or moving average) appears on the surface as something unique. Often this
new proposed rule (or moving average) is said to be better than its competitors;
such a claim is usually supported by colorful narratives and anecdotal evidence.
The existing situation in the field of market timing with moving aver-

ages is as follows. Technical traders are overwhelmed by the variety of choices
between different trading indicators. Because traders do not really understand
the response characteristics of the trading indicators they use, the selection of
a trading indicator is made based mainly on intuition rather than any deeper
analysis of commonalities and differences between miscellaneous choices for
trading rules and moving averages. It would be no exaggeration to say that
the existing situation resembles total chaos and mess from the perspective of a
newcomer to this field.
The ultimate goal of this chapter is to bring some order to the chaos in the

field of market timing with moving averages. We offer a framework that can
be used to uncover the anatomy of market timing rules with moving averages
of prices. Specifically, we present a methodology for examining how the value

© The Author(s) 2017
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of a trading indicator is computed. Then using this methodology we study the
computation of trading indicators in many market timing rules and analyze
the commonalities and differences between the rules. Our analysis gives a new
look to old indicators and offers a new and very insightful re-interpretation of
the existing market timing rules.
To begin with, as motivation, consider the following example. It has been

known for years that there is a relationship between the Momentum rule and
the Simple Moving Average Change of Direction rule.1 In particular, note that

SMAt (n − 1) − SMAt−1(n − 1) = Pt − Pt−n+1

n − 1
= MOMt (n)

n − 1
. (5.1)

Therefore
Indicator�SMA(n−1)

t ≡ IndicatorMOM(n)
t , (5.2)

where the mathematical symbol “≡” means “equivalence”. The equivalence of
two technical indicators stems from the following property: themultiplication of
a technical indicator by any positive real number produces an equivalent technical
indicator. This is because the trading signal is generated depending on the sign
of the technical indicator. The formal presentation of this property:

sgn
(
a × IndicatorT R

t

)
= sgn

(
IndicatorT R

t

)
, (5.3)

where a is any positive real number and sgn(·) is themathematical sign function
defined by

sgn(x) =

⎧
⎪⎨
⎪⎩

1 if x>0,

0 if x=0,

−1 if x<0.

To see the validity of relation (5.2), observe from Eq. (5.1) that if SMAt (n −
1) − SMAt−1(n − 1) > 0 then MOMt(n) > 0 and vice versa. In other
words, the Simple Moving Average Change of Direction rule, �SMA(n − 1),
generates a Buy (Sell) trading signal when the Momentum rule, MOMt (n),
generates a Buy (Sell) trading signal.

What else can we say about the relationship between differentmarket timing
rules? Are there other seemingly different rules that generate similar trading
signals? Which rules differ only a little and which rules differ substantially?

1See, for example, http://en.wikipedia.org/wiki/Momentum_(technical_analysis).
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This chapter offers answers to these questions and demonstrates that all market
timing rules considered in this book are closely interconnected. In particular,
we are going to show that the computation of a technical trading indicator for
every market timing rule, based on either one or multiple moving averages,
can be interpreted as the computation of a single weighted moving average of
price changes over the averaging window. More formally, we will demonstrate
that the computation of a technical trading indicator for every market timing
rule can be written as

IndicatorT R(n)
t =

n−1∑
i=1

πi�Pt−i , (5.4)

where, recall, �Pt−i = Pt−i+1 − Pt−i denotes the price change and πi is the
weight of the price change �Pt−i in the computation of a weighted moving
average of price changes.Therefore, despite a great variety of trading indicators
that are computed seemingly differently at the first sight, the only real difference
between the diverse trading indicators lies in the weighting function used to
compute the moving average of price changes. In addition, we will show that
the weights πi can be normalized for majority of market timing rules.

5.2 Momentum Rule

The computation of the technical trading indicator for the Momentum rule
can equivalently be written as

IndicatorMOM(n)
t = MOMt (n) = Pt − Pt−n+1

= (Pt − Pt−1) + (Pt−1 − Pt−2) + ... + (Pt−n+2 − Pt−n+1) =
n−1∑
i=1

�Pt−i .

(5.5)

Consequently, using property (5.3), the computation of the technical indicator
for the Momentum rule is equivalent2 to the computation of the equally

2When we apply property (5.3), we use a = 1
n−1 . In virtually all cases the value of a is chosen to normalize

the set of weights. In this particular case a also equals the weight of each price change in the computation
of the moving average of price change.
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weighted moving average of price changes (in a window which contains n
consequent prices):

IndicatorMOM(n)
t ≡ 1

n − 1

n−1∑
i=1

�Pt−i . (5.6)

Written in this form, it becomes evident that the Momentum rule can also be
classified as a moving average trading rule. The important distinction is that
this rule is based on a moving average of price changes, not prices.

5.3 Price Minus Moving Average Rule

First, we derive the relationship between the Price Minus Moving Average rule
and the Momentum rule:

IndicatorP-MA(n)
t = Pt − MAt (n) = Pt −

∑n−1
i=0 wi Pt−i∑n−1

i=0 wi
=

∑n−1
i=0 wi Pt − ∑n−1

i=0 wi Pt−i∑n−1
i=0 wi

=
∑n−1

i=1 wi (Pt − Pt−i )∑n−1
i=0 wi

=
∑n−1

i=1 wi MOMt (i + 1)
∑n−1

i=0 wi
. (5.7)

Observe that weight w0 is absent in the numerator of the last fraction above.
Therefore the sum of the weights in the numerator is not equal to the sum
of the weights in the denominator. However, using property (5.3), we can
delete weight w0 from the denominator. As a result, the relation above can be
conveniently re-written as

IndicatorP-MA(n)
t ≡

∑n−1
i=1 wi MOMt (i + 1)∑n−1

i=1 wi
. (5.8)

In this form, the derived equivalence relation says that the computation of
the technical trading indicator for the Price Minus Moving Average rule,
Pt − MAt(n), is equivalent to the computation of the weighted moving av-
erage of technical indicators for the Momentum rules, MOMt(i + 1), for
i ∈ [1, n − 1]. It is worth noting that the weighting function for comput-
ing the moving average of the Momentum technical indicators is virtually the
same as the weighting function for computing the weighted moving average
MAt (n).
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Second, we use identity (5.5) and rewrite the numerator of the last fraction
in (5.7) as a double sum

n−1∑
i=1

wi MOMt (i + 1) =
n−1∑
i=1

wi

i∑
j=1

�Pt− j .

Interchanging the order of summation in the double sum above yields

n−1∑
i=1

wi

i∑
j=1

�Pt− j =
n−1∑
j=1

⎛
⎝

n−1∑
i= j

wi

⎞
⎠�Pt− j . (5.9)

This result tells us that the numerator of the last fraction in (5.7) is a weight-
ed sum of the price changes over the averaging window, where the weight of
�Pt− j equals

∑n−1
i= j wi . Thus, another alternative expression for the compu-

tation of the technical indicator for the Price Minus Moving Average rule is
given by

IndicatorP-MA(n)
t =

∑n−1
j=1

(∑n−1
i= j wi

)
�Pt− j

∑n−1
i=0 wi

=
n−1∑
j=1

φ j�Pt− j , (5.10)

where φ j is given by Eq. (2.6). It is worth noting that we could derive this
result much more easily using Eq. (2.7) for the alternative representation of
a weighted moving average. However, a longer two-step derivation allows us
to show that the computation of the technical trading indicator for the Price
Minus Moving Average rule can equivalently be interpreted in two alternative
ways: as a computation of the weighted moving average of Momentum rules,
and as a computation of the weighted moving average of price changes.

In the same manner as in Sect. 2.3, we can analyse the properties of the
technical trading indicator for the Price Minus Moving Average rule by as-
suming that the price change follows a Random Walk process with a drift:
�Pt− j = E[�P] + σε j . In this case the expected value of the technical
indicator is given by

E [Pt − MAt(n)] =
n−1∑
j=1

φ j E[�P] = Lag time(MA) × E[�P]. (5.11)

If the prices trend upward (E[�P] > 0), in order a Buy signal is gener-
ated, the expected value of this trading indicator should be positive. This
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requires that the average lag time of a moving average must be strictly positive
(Lag time(MA) > 0). In other words, this rule requires a moving average
that clearly lags behind the price trend. Otherwise, if a moving average in
this rule has zero lag time, this trading indicator becomes a random noise
generator.3 In addition, Eq. (5.11) implies that when the trend is sideways
(meaning that E[�P] = 0), then again this trading indicator becomes a
random noise generator.

Yet another property of the technical trading indicator for the Price Minus
Moving Average rule appears due to the method of computation of weights
φ j . Since

φ j =
∑n−1

i= j wi∑n−1
i=0 wi

,

in case all weights wi are strictly positive, the sequence of weights φ j is
decreasing with increasing j

φ1 > φ2 > . . . > φn−1.

Consequently, in this case, regardless of the shape of the weighting function for
priceswi , the weighting function φ j always over-weights the most recent price
changes. Specifically, if, for example, all prices are equally weighted in amoving
average, then the application of the Price Minus Moving Average rule leads to
overweighting the most recent price changes. If the price weighting function
of a moving average is already designed to overweight the most recent prices,
then generally the trading signal in this rule is computed with a much stronger
overweighting the most recent price changes. Probably the only exception is
the Price Minus Exponential Moving Average rule; this will be demonstrated
below.

Before going further, observe that the weights in Eq. (5.10) are not nor-
malized. This issue can be easily fixed by using property (5.3) and rewriting
Eq. (5.10) as

IndicatorP-MA(n)
t ≡

∑n−1
j=1 υ j�Pt− j∑n−1

j=1 υ j
, where υ j =

n−1∑
i= j

wi . (5.12)

3This is because in this case the expected value of the trading indicator equals zero. Therefore the value
of the difference Pt − MAt (n) is related to the weighted sum of random disturbances σε j . This sum is
also a random variable with zero mean.
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Let us now, on the basis of (5.12), derive the closed-form expressions for
the computation of technical indicator of the Price Minus Moving Average
rule for all ordinary moving averages considered in Sect. 3.1. We start with
the Simple Moving Average which is the equally weighted moving average of
prices. In this case the weight of �Pt− j is given by

υ j =
n−1∑
i= j

wi =
n−1∑
i= j

1 = n − j. (5.13)

Consequently, the equivalent representation for the computation of the tech-
nical indicator for the Price Minus Simple Moving Average rule is given by

IndicatorP-SMA(n)
t ≡

∑n−1
j=1(n − j)�Pt− j∑n−1

j=1(n − j)
= (n − 1)�Pt−1 + (n − 2)�Pt−2 + . . . + �Pt−n+1

(n − 1) + (n − 2) + . . . + 1
.

(5.14)
The resulting formula suggests that alternatively we can interpret the computa-
tion of the technical indicator for the PriceMinus SimpleMoving Average rule
as the computation of a Linearly Weighted Moving Average of price changes.

We next consider the Linear Moving Average. In this case the weight of
�Pt− j is given by

υ j =
n−1∑
i= j

wi =
n−1∑
i= j

(n − j) = (n − j)(n − j + 1)

2
, (5.15)

which is the sum of the terms of arithmetic sequence from 1 to n − j with
the common difference of 1. As the result, the equivalent representation for
the computation of the technical indicator for the Price Minus Linear Moving
Average rule is given by

IndicatorP-LMA(n)
t ≡

∑n−1
j=1

(n− j)(n− j+1)
2 �Pt− j∑n−1

j=1
(n− j)(n− j+1)

2

. (5.16)

Finally we consider the (infinite) Exponential Moving Average which is
computed as
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EMAt(λ) = Pt + λPt−1 + λ2Pt−2 + λ3Pt−3 + . . .

1 + λ + λ2 + λ3 + . . .
.

In this case the size of the averaging window n → ∞ and the weight of�Pt−i
is given by

υ j =
∞∑
i= j

wi =
∞∑
i= j

λi = λ j

1 − λ
, (5.17)

which is the sum of the terms of a geometric sequence with the initial term
λ j and the common ratio λ. Consequently, the equivalent presentation for
the computation of the technical indicator for the Price Minus Exponential
Moving Average rule is given by

IndicatorP-EMA(λ)
t ≡

∑∞
j=1 λ j�Pt− j∑∞

j=1 λ j
= (1 − λ)

∞∑
j=1

λ j−1�Pt− j . (5.18)

In words, the computation of the trading indicator for the Price Minus Ex-
ponential Moving Average rule is equivalent to the computation of the Ex-
ponential Moving Average of price changes. It is worth noting that this is
probably the only trading indicator where the weighting function for the com-
putation of moving average of prices is identical to the weighting function for
the computation of moving average of price changes.

We remind the reader that instead of notation EMAt(λ) one uses notation
EMAt(n) where n denotes the size of the averaging window in a Simple
Moving Average with the same average lag time as in EMAt(λ). The value of
the decay factor in EMAt(n) is computed as λ = n−1

n+1 .
For the sake of illustration, Fig. 5.1 plots the shapes of the price change

weighting functions in the Momentum (MOM) rule and four Price Minus
Moving Average rules: Price Minus Simple Moving Average (P-SMA) rule,
Price Minus Linear Moving Average (P-LMA) rule, Price Minus Exponential
Moving Average (P-EMA) rule, and Price Minus Triangular Moving Average
(P-TMA) rule. In all rules, the size of the averaging window equals n = 30.
Observe that in all but theMomentum rule theweighting function overweights
the most recent price changes.
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Weighting Functions in Momentum and Price Minus Moving Average rules

Fig. 5.1 The shapes of the price change weighting functions in theMomentum (MOM)
rule and four Price Minus Moving Average rules: Price Minus Simple Moving Average
(P-SMA) rule, Price Minus Linear Moving Average (P-LMA) rule, Price Minus Exponential
Moving Average (P-EMA) rule, and Price Minus Triangular Moving Average (P-TMA)
rule. In all rules, the size of the averaging window equals n = 30. The weights of the
price changes in the P-EMA rule are cut off at lag 30

5.4 Moving Average Change of Direction Rule

The value of this technical trading indicator is based on the difference of two
weighted moving averages computed at times t and t − 1 respectively. We
assume that in each moving average the size of the averaging window equals
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n − 1. The reason for this assumption is to ensure that the trading indicator is
computed over the window of size n. The straightforward computation yields

Indicator�MA(n−1)
t = MAt (n − 1) − MAt−1(n − 1) =

∑n−2
i=0 wi Pt−i∑n−2

i=0 wi
−

∑n−2
i=0 wi Pt−i−1∑n−2

i=0 wi

=
∑n−2

i=0 wi (Pt−i − Pt−i−1)∑n−2
i=0 wi

=
∑n−2

i=0 wi�Pt−i−1∑n−2
i=0 wi

=
∑n−1

i=1 wi−1�Pt−i∑n−1
i=1 wi−1

.

(5.19)

Consequently, the computation of the technical indicator for the Moving
Average Change of Direction rule can be interpreted as the computation of
the weighted moving average of price changes:

Indicator�MA(n−1)
t =

∑n−1
i=1 wi−1�Pt−i∑n−1

i=1 wi−1
. (5.20)

From (5.20) we can easily recover the relationship for the case of the Simple
Moving Average where wi−1 = 1 for all i :

Indicator�SMA(n−1)
t =

∑n−1
i=1 �Pt−i∑n−1

i=1 1
= 1

n − 1

n−1∑
i=1

�Pt−i ≡ IndicatorMOM(n)
t , (5.21)

where the last equivalence follows from (5.6).
In the case of the Linear Moving Average where wi−1 = n − i , we derive a

new relationship:

Indicator�LMA(n−1)
t ≡

∑n−1
i=1 (n − i)�Pt−i∑n−1

i=1 (n − i)
≡ IndicatorP-SMA

t (n), (5.22)

where the last equivalence follows from (5.14). Putting it into words, the
PriceMinus SimpleMoving Average rule, Pt − SMAt(n), prescribes investing
in the stocks (moving to cash) when the Linear Moving Average of prices,
LMAt (n − 1), increases (decreases).
In the case of the Exponential Moving Average, the resulting expression for

the Change of Direction rule can be written as

Indicator�EMA(λ)
t =

∑∞
i=1 λi−1�Pt−i∑∞

i=1 λi−1
= (1−λ)

∞∑
j=1

λ j−1�Pt− j . (5.23)
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Consequently, the computation of the technical indicator for the Exponential
Moving Average Change of Direction rule is equivalent to the computation
of the (infinite) Exponential Moving Average of price changes. Observe also
the similarity between Eqs. (5.23) and (5.18). This similarity implies that the
Exponential Moving Average Change of Direction rule is equivalent to the
Price Minus Exponential Moving Average rule.

For the sake of illustration, Fig. 5.2 plots the shapes of the price change
weighting functions in five Moving Average Change of Direction rules: Sim-
ple Moving Average (SMA) Change of Direction rule, Linear (LMA) Moving
Average Change of Direction rule, Exponential Moving Average (EMA)
Change ofDirection rule, Double ExponentialMoving Average (EMA(EMA))
Change of Direction rule, and Triangular (TMA) Moving Average Change of
Direction rule. In all rules, the size of the averaging window equals n = 30.

Finally it is worth commenting that the traders had long ago taken notice
of the fact that often a trading signal (Buy or Sell) is generated first by the
Price Minus Moving Average rule, then with some delay the same trading
signal is generated by the corresponding Moving Average Change of Direction
rule. Therefore the traders, who use the Price Minus Moving Average rule,
often wait to see whether a trading signal of the Price Minus Moving Average
rule is “confirmed” by a trading signal of the corresponding Moving Average
Change of Direction rule (see Murphy 1999, Chap. 9). Our analysis provides
a simple explanation for the existence of a natural delay between the signals
generated by these two rules. Specifically, the delay naturally occurs because the
Price Minus Moving Average rule overweights more heavily the most recent
price changes than the Moving Average Change of Direction rule computed
using the same weighting scheme. Therefore the Price Minus Moving Average
rule reacts more quickly to the recent trend changes than the Moving Average
Change of Direction rule.
To elaborate on the aforesaid in more details, suppose that the trader uses

the Price Minus Simple Moving Average rule and acts only when the signal
generated by this rule is confirmed by a corresponding signal generated by the
Simple Moving Average Change of Direction rule. Our result (5.22) says that
the Price Minus Simple Moving Average rule is equivalent to the Linear Mov-
ing Average Change of Direction rule. Consequently, the trader’s strategy can
equivalently be interpreted as follows: observe the signal generated by the Lin-
ear Moving Average Change of Direction rule and wait for the corresponding
signal generated by the Simple Moving Average Change of Direction rule. We
know from Chap. 3 that the Linear Moving Average has a shorter average lag
time than the Simple Moving Average. Therefore, the Linear Moving Average
reacts faster to the changes in the direction of the price trend than the Simple
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Weighting Functions in Moving Average Change of Direction rules

Fig. 5.2 The shapes of the price change weighting functions in five Moving Average
Change of Direction rules: Simple Moving Average (SMA) Change of Direction rule,
Linear (LMA) Moving Average Change of Direction rule, Exponential Moving Aver-
age (EMA) Change of Direction rule, Double Exponential Moving Average (EMA(EMA))
Change of Direction rule, and Triangular (TMA) Moving Average Change of Direction
rule. In all rules, the size of the averaging window equals n = 30. The weights of the
price changes in the �EMA and �EMA(EMA) rules are cut off at lag 30

Moving Average. As a result, when the trading signal of the Simple Moving
Average Change of Direction rule “confirms” the trading signal of the Linear
Moving Average Change of Direction rule, it only means that, after a recent
break in trend identified by the Linear Moving Average Change of Direction
rule, the prices continued to trend in the same direction for a while.
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5.5 Moving Average Crossover Rule

The relationship between theMoving Average Crossover rule and theMomen-
tum rule is as follows (here we use the result given by Eq. (5.7))

IndicatorMAC(s,l)
t = MAt (s) − MAt (l) = (Pt − MAt (l)) − (Pt − MAt (s))

=
∑l−1

i=1 wl
i MOMt (i + 1)∑l−1
i=0 wl

i

−
∑s−1

i=1 ws
i MOMt (i + 1)∑s−1
i=0 ws

i

=
l−1∑
i=1

φl
i MOMt (i + 1) −

s−1∑
i=1

φs
i MOMt (i + 1). (5.24)

Different superscripts in the weights mean that for the same subscript the
weights are generally not equal. For example, in case of the Linear Moving
Average, wl

i = l − i whereas ws
i = s − i .

The application of the result given by Eq. (5.10) yields

IndicatorMAC(s,l)
t =

∑l−1
j=1

(∑l−1
i= j w

l
i

)
�Pt− j

∑l−1
i=0 wl

i

−
∑s−1

j=1

(∑s−1
i= j ws

i

)
�Pt− j

∑s−1
i=0 ws

i

=
l−1∑
j=1

φl
j�Pt− j −

s−1∑
j=1

φs
j�Pt− j . (5.25)

Therefore the computation of the trading indicator in the Moving Average
Crossover rule can be presented as

IndicatorMAC(s,l)
t =

s−1∑
j=1

(
φl
j − φs

j

)
�Pt− j +

l−1∑
j=s

φl
j�Pt− j . (5.26)

The computation of the trading indicator in the Moving Average Crossover
rule is basically similar to the computation of the trading indicator in the Price
Minus Moving Average rule; the only difference is that the shorter moving
average is used instead of the last closing price. To understand the effect of
using the shorter moving average instead of the last price, we present the
computation of the trading indicator in the Price Minus Moving Average rule
in the following form (assuming that l = n)

IndicatorP-MA(l)
t =

l−1∑
j=1

φl
j�Pt− j =

s−1∑
j=1

φl
j�Pt− j +

l−1∑
j=s

φl
j�Pt− j .

(5.27)
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The comparison of Eqs. (5.26) and (5.27) reveals that the price change weight-
ing functions for both the rules, MAC(s, l) and P − MA(l), are identical
beginning from lag s and beyond. In contrast, as compared to the price change
weighting function of P−MA(l) rule, the price change weighting function of
MAC(s, l) rule assigns smaller weights to the most recent price changes (from
lag 1 to lag s−1). Since most typically the price change weighting function in
the P − MA(l) rule overweights the most recent price changes, the reduction
of weights of the most recent price changes in the MAC(s, l) rule makes its
price change weighting function to underweight both the most recent and the
most distant price changes.

When the Simple Moving Average is used in both the shorter and longer
moving averages, the computation of the trading indicator is given by (see the
subsequent appendix for the details of the derivation)

IndicatorSMAC(s,l)
t = SMAt (s) − SMAt (l) =

s−1∑
j=1

(l − s) j

l × s
�Pt− j +

l−1∑
j=s

(l − j)

l
�Pt− j .

(5.28)
When the lag number j increases, the price change weighting function in this
rule linearly increases till lag s where it attains its maximum. Afterwards, the
price change weighting function linearly decreases toward zero.

When the Exponential Moving Average is used in both the shorter and
longer moving averages, the computation of the trading indicator is given by
(see the subsequent appendix for the details of the derivation)

IndicatorEMAC(s,l)
t = EMAt(λs) − EMAt(λl) =

∞∑
j=1

(
λ
j
l − λ

j
s

)
�Pt− j ,

(5.29)
where

λl = l − 1

l + 1
, λs = s − 1

s + 1
.

Again, when the lag number j increases, the price change weighting function
first increases, attains the maximum, then decreases toward zero. Specifically,
the price change weighting function attains its maximum at lag

j =
ln

(
ln(λs)
ln(λl )

)

ln
(

λl
λs

) . (5.30)
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Weighting Functions in Moving Average Crossover rules

Fig. 5.3 The shapes of the price change weighting functions in five Moving Average
Crossover rules: Simple Moving Average (SMA) Crossover rule, Linear (LMA) Moving
Average Crossover rule, Exponential Moving Average (EMA) Crossover rule, Double
Exponential Moving Average (EMA(EMA)) Crossover rule, and Triangular (TMA) Mov-
ing Average Crossover rule. In all rules, the sizes of the shorter and longer averaging
windows equal s = 10 and l = 30 respectively

For the sake of illustration, Fig. 5.3 plots the shapes of the price change
weighting functions in five Moving Average Crossover rules: Simple Mov-
ing Average (SMA) Crossover rule, Linear (LMA) Moving Average Crossover
rule, ExponentialMoving Average (EMA) Crossover rule, Double Exponential
Moving Average (EMA(EMA)) Crossover rule, andTriangular (TMA)Moving
Average Crossover rule. In all rules, the sizes of the shorter and longer averaging
windows equal s = 10 and l = 30 respectively.
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Recall from Sect. 4.5 that the Moving Average Crossover rule generates a
much lesser number of false trading signals than the Price Minus Moving
Average rule (at least, when daily data are used). In other words, the Moving
Average Crossover rule reduces whipsaw trades. The foregoing analytic expo-
sition revealed that, as compared to the price change weighting function of
the Price Minus Moving Average rule, the price change weighting function
of the Moving Average Crossover rule assigns lesser weights to the most re-
cent price changes. This analytical result is supported by a visual comparison
of the shapes of the price change weighting functions of some Moving Aver-
age Crossover rules (visualized in Fig. 5.3) and the shapes of the price change
weighting functions of the corresponding Price Minus Moving Average rules
(shown in Fig. 5.1). Consequently, the reduction in the number of false trading
signals is achieved by reducing the weights of the most recent price changes.
However, the reduction of weights of the most recent price changes has a side
effect. Specifically, as compared to the Price Minus Moving Average rule, the
Moving Average Crossover rule reacts with a longer delay to the changes in the
price trend.
Traditionally, in theMAC(s, l) rule the size of the shorter averaging window

is substantially smaller than the size of the longer averaging window, s � l.
In this case the price change weighting function has a hump-shaped form
where the top is located closer to the right end of the shape. However, the
MAC(s, l) rule is very flexible and able to generate many different shapes
of the price change weighting function. For the sake of illustration, Fig. 5.4
provides examples of possible shapes of the price change weighting functions
generated by the Simple Moving Average Crossover rule. Specifically, when
s = 1, the MAC(1, l) rule is equivalent to the P-MA(l) rule that assigns
decreasing weights to more distant price changes. When 1 < s < l − 1, the
top of the hump-shaped form is located at lag s. If s = l/2, then the top of the
hump-shaped form is located exactly in the middle of the averaging window.
It is interesting to observe that, when s = l − 1, the price change weighting
function assigns greater weights to more distant price changes. That is, the
MAC(s, l) rule is able to produce both decreasing, humped, and increasing
shapes of the price-change weighting function.
The illustrations of the shapes of the price change weighting functions in

theMoving Average Crossover rule, provided in Figs. 5.3 and 5.4, are based on
using moving averages with non-negative weights. However, there are moving
averages, considered in Sect. 3.3, which assign negative weights to more distant
prices in the averaging window. When moving averages have negative weight-
s, the shape of the price change weighting function in the Moving Average
Crossover rule becomes more elaborate. For the sake of illustration, Fig. 5.5
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Fig. 5.4 The shapes of the price change weighting functions in five Simple Moving
Average Crossover (SMAC) rules. In all rules, the size of the longer averaging win-
dow equals l = 30, whereas the size of the shorter averaging window takes values in
s ∈ [1, 5, 15, 25, 29].

plots the shapes of the price changeweighting functions for theMovingAverage
Crossover rules based on the Double Exponential Moving Average (DEMA)
and theTriple ExponentialMovingAverage (TEMA) proposed by PatrickMul-
loy (see Mulloy 1994a, and Mulloy 1994b), the Hull Moving Average (HMA)
proposed by AlanHull (see Hull 2005), and the Zero Lag Exponential Moving
Average (ZLEMA) proposed by Ehlers and Way (see Ehlers and Way 2010).
Observe that all the price change weighting functions first increase, attain a
maximum, then decrease below zero, attain a minimum, and finally increase
toward zero. The pattern of the alternation of weights in these functions sug-
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Fig. 5.5 The shapes of the price change weighting functions for the Moving Average
Crossover rule based on the Double Exponential Moving Average (DEMA) and the Triple
Exponential Moving Average (TEMA) proposed by Patrick Mulloy, the Hull Moving Av-
erage (HMA) proposed by Alan Hull, and the Zero Lag Exponential Moving Average
(ZLEMA) proposed by Ehlers and Way. In all rules, the sizes of the shorter and longer
averaging windows equal s = 10 and l = 30 respectively

gests that these rules are supposed to react to the changes in the price trend. For
example, a strong Buy signal is generated when the prices first trend downward
(the price changes are negative), then upward (the price changes are positive).
Similarly, a strong Sell signal is generated when the prices first trend upward,
then downward. Alternatively, these rules might work well when the prices are
mean-reverting.
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5.6 Moving Average Convergence/Divergence
Rule

The computation of the technical trading indicator of the originalMACD rule
by Gerald Appel is based on using three Exponential Moving Averages:

MACt (s, l) = EMAt(s) − EMAt(l),

IndicatorMACD(s,l,n)
t = MACt(s, l) − EMAt(n, MAC(s, l)).

For this rule, the computation of the trading indicator, in terms of price
changes, is given by (see the subsequent appendix for the details of the deriva-
tion)

IndicatorMACD(s,l,n)
t =

∞∑
j=1

((
λ
j
l − λ

j
s

)
− (1 − λ)

[
λ
j
l − λ j

1 − λ
λl

− λ
j
s − λ j

1 − λ
λs

])
�Pt− j ,

(5.31)
where

λl = l − 1

l + 1
, λs = s − 1

s + 1
, λ = n − 1

n + 1
.

Obviously, the computation of the trading indicator can also be interpreted as
calculating the weighted average of price changes

IndicatorMACD(s,l,n)
t =

∞∑
j=1

π j�Pt− j , (5.32)

where π j is the weight of price change �Pt− j in the computation of the
weighted average. However, in the case of the MACD rule, the weights π j
cannot be normalized because the sum of the weights equals zero (see the
subsequent appendix for a proof ).

Figure 5.6 illustrates the shapes of the price change weighting functions in
threeMoving Average Convergence/Divergence rules: the originalMACD rule
of Gerald Appel based on using ExponentialMoving Averages (EMA), and two
MACD rules of Patrick Mulloy based on using Double Exponential Moving
Averages (DEMA) and Triple Exponential Moving Averages (TEMA). In all
rules, the sizes of the averaging windows equal s = 12, l = 26, and n = 9
respectively.
The shape of the price change weighting function of the original MACD

rule resembles the shape of the price change weighting function of the MAC
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Fig. 5.6 The shape of the price change weighting functions in three Moving Average
Convergence/Divergence rules: the original MACD rule of Gerald Appel based on using
Exponential Moving Averages (EMA), and two MACD rules of Patrick Mulloy based on
using Double Exponential Moving Averages (DEMA) and Triple Exponential Moving
Averages (TEMA). In all rules, the sizes of the averaging windows equal s = 12, l = 26,
and n = 9 respectively

rule where either DEMA or TEMA are used (see Fig. 5.5). The pattern of the
alternation of weights in the original MACD rule confirms our observation
made in Sect. 4.7. Specifically, the original MACD rule is designed to react to
the changes in the price trend. The pattern of the alternation of weights in the
two MACD rules of Patrick Mulloy resembles a damped harmonic oscillator
(for example, a sine wave). This observation suggests that using either DEMA
or TEMA in the MACD rule is sensible when prices are mean reverting with
more or less stable period of mean-reversion.
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5.7 Review of Anatomy of Trading Rules

This chapter demonstrates that the computationof a technical trading indicator
for everymoving average trading rule can alternatively be given by the following
simple formula

IndicatorT R(n)
t =

n−1∑
i=1

πi�Pt−i . (5.33)

In words, all technical trading indicators considered in this book are computed
in the same general manner. In particular, any trading indicator is computed
as a weighted average of price changes over the averaging window. As a result,
any combination of a specific trading rule with a specific moving average of
prices can be uniquely characterized by a peculiar weighting function of price
changes. Therefore any differences between trading rules can be attributed
solely to the differences between their price change weighting functions. As a
natural consequence to this result, two seemingly different trading rules can
be equivalent when their price change weighting functions are alike.

In spite of the fact that there is a great number of potential combinations of
a specific trading rule with a specific moving average of prices, there are only
four basic types (or shapes) of price change weighting functions:

1. Functions that assign equal weights to all price changes;
2. Functions that overweight (underweight) the most recent (distant) price

changes;
3. Hump-shaped functions that underweight both the most recent and the

most distant price changes;
4. Functions that have a damped waveform. Whereas in the previous types

of weighting functions all price changes have non-negative weights, in this
type the weights of price changes periodically change sign from positive to
negative or vice versa.

The two trading rules that have equal weighting of price changes are the
MOMrule (see Fig. 5.1) and the�SMA rule (see Fig. 5.2).The�SMA(n−1)
rule is equivalent to the MOM(n) rule.
The trading rules that overweight the most recent price changes include all

P-MA rules based onmoving averages with non-negative weights (see Fig. 5.1),
as well as all �MA rules based on moving averages that overweight the most
recent prices (see Fig. 5.2). The main examples of moving averages that over-
weight the most recent prices are the LMA and the EMA. Both the P-SMA
rule and the�LMA rule have a linear weighting function for price changes (see
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Figs. 5.1 and 5.2). The �LMA(n−1) rule is equivalent to the P − SMA(n)

rule.
In a linear weighting function, the weights decrease linearly as the lag of a

price change increases. Besides linear weighting, this type of a weighting func-
tion (that overweights themost recent price changes) can be a convex decreasing
function, a concave decreasing function, or a decreasing function with several
inflection points. We find that both the P-EMA rule and the�EMA rule have
the same exponentially decreasing weighting function for price changes (again,
see Figs. 5.1 and 5.2); hence, these two rules are equivalent. Another example
of a trading rule with a convex decreasing weighting function for price changes
is the P-LMA rule (see Fig. 5.1). The visual comparison of the price change
weighting functions of the P-SMA and P-EMA rules (see Fig. 5.1) suggests
that these two weighting functions look essentially similar; therefore we may
expect that the performance of the P-SMA rule does not differ much from that
of both the P-EMA and �EMA rules.
The hump-shaped weighting function for price changes can be created by

using the MAC rule where both shorter and longer moving averages have only
non-negative weights (see Fig. 5.3). The examples of such moving averages
are all ordinary moving averages and moving averages of moving averages
(where only ordinary moving averages are used). Alternatively, the hump-
shaped weighting function for price changes can be created by using�MA rule
based on a hump-shaped moving average (for example, �EMA(EMA) rule,
see Fig. 5.2). Yet another way of creating a hump-shaped weighting function is
to smooth the trading indicator, that employs a decreasing weighting function
for price changes, using a shorter moving average. Since a decreasing weighting
function can be created by either the P-MA or �MA rule, the two additional
ways are

MAs(P − MAn) = MAs − MAs(MAn),

and
MAs(�MAn) = MAs(MAn) − MAs(Lag1(MAn)).

The computation of the trading indicator of the MAs(P − MAn) rule
closely resembles the computation of the trading indicator of the MAC(s, l)
rule. Figure 5.7 demonstrates the shape of the price change weighting functions
in three MAs(P − MAn) rules that are based on SMA, LMA, and EMA.The
shapes of these price change weighting functions closely resemble those of
the price change weighting functions in the corresponding MAC rules (see
Fig. 5.3).
The computation of the trading indicator of the MAs(�MAn) rule

differs from the computation of the trading indicator of the MAC(s, l) rule.
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Fig. 5.7 The shape of the price change weighting functions in three MAs(P − MAn)

rules. In all rules, the sizes of the shorter and longer averaging windows equal s = 10
and n = 26 respectively

However, Fig. 5.8 shows that, when either LMA or EMA is used, the shapes of
the price change weighting functions in the MAs(�MAn) rule closely resem-
ble those of the price change weighting functions in the corresponding MAC
rules (see Fig. 5.3). Only when SMA is used, the price change weighting func-
tion, even though it has a hump-shaped form, differs from the hump-shaped
price-change weighting function of theMAC rule based on SMA (see Fig. 5.3).
The final type of a price change weighting function has a damped waveform.

Themain example of a trading rule that has this type of a price changeweighting
function is the MACD rule (see Fig. 5.6). However, the damped waveform of
a price change weighting function can also be created by using the MAC rule
based on moving averages that change sign (see Fig. 5.5). In particular, these
moving averages assign positive weights to most recent prices, but negative
weights to most distant prices.
The trading rules that have one of the first three types of the shape of

the price change weighting function (equal, decreasing, or hump-shaped) are
designed to identify the direction of the trend and generate a Buy (Sell) signal
when prices trend upward (downward). These rules generate correct Buy and
Sell trading signals when prices trend steadily upward or downward. However,
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Fig. 5.8 The shape of the price change weighting functions in three MAs(�MAn) rules.
In all rules, the sizes of the shorter and longer averaging windows equal s = 10 and
n = 30 respectively

when prices go sideways, or the price trend often changes its direction, these
rules do notwork. In contrast, the trading rules that have the dampedwaveform
shape of price change weighting function are designed to react to the changes
in the trend direction. That is, these rules might be profitable when either the
price trend often changes its direction or prices are mean-reverting. However,
when prices trend steadily, these rules lose their advantage.

5.8 Chapter Summary

In this chapter we presented the methodology to study the computation of
trading indicators in many market timing rules based on moving averages of
prices and analyzed the commonalities and differences between the rules. Our
analysis revealed that the computation of every technical trading indicator
considered in this book can equivalently be interpreted as the computation
of the weighted average of price changes over the averaging window. Despite
a great variety of trading indicators that are computed seemingly differently
at the first sight, we found that the only real difference between the diverse
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trading indicators lies in the weighting function used to compute the moving
average of price changes. The most popular trading indicators employ either
equal-weighting of price changes, overweighting themost recent price changes,
a hump-shaped weighting function which underweights both the most recent
and most distant price changes, or a weighting function that has a damped
waveform where the weights of price changes periodically alter sign.

Our methodology of analyzing the computation of trading indicators for
the timing rules based on moving averages offers a broad and clear perspective
on the relationship between different rules. Whereas moving averages of prices
are indispensable in visualizing how the trading signals are generated, because
there is a great variety of trading rules, it is virtually impossible to see the
commonalities and differences between various trading rules. In addition, if
more than two moving averages are used to generate a trading signal, in this
case it is also cumbersome to understand how a trading signal is generated.
In contrast, our methodology of presenting the computation of the trading
indicator in terms of a single moving average of price changes, rather than
one or more moving averages of prices, uncovers the anatomy of trading rules
and provides very useful insights about popular trend rules. In addition, our
analysis offers a new and very insightful re-interpretation of the existingmarket
timing rules.
The list of the useful insights about the popular trend rules, uncovered by

our analysis, includes, but is not limited to, the following:

• Each trading rule based on one or multiple moving average of prices can
be uniquely characterized by a single moving average of price changes.

• There are only four basic shapes of the weighting function for price
changes.

• The same type of shape of the price change weighting function can be
created using several alternative trading rules.

• There are trading rules with exactly the same shape of the price change
weighting function; hence these rules are equivalent.The list of equivalent
rules includes: theMOMand�SMA rules, the P-SMA and�LMA rules,
and the P-EMA and �EMA rules.

• Virtually every trading rule can also be presented as a weighted average of
the Momentum rules computed using different averaging periods. Thus,
the Momentum rule might be considered as an elementary trading rule
on the basis of which one can construct more elaborate rules.

• The trading rules that have either equal, decreasing, or hump-shaped
form of the price change weighting function represent the “authentic”
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trend rules. These rules are designed to generate correct signals when
prices trend steadily upward or downward.

• The trading rules that have a damped waveform shape of the price change
weighting function are designed to react to the changes in the trend di-
rection. These rules generate correct signals when trend either accelerates
or decelerates. Such rules might be profitable when either the price trend
often changes its direction or prices are mean-reverting.

Table 5.1 summarizes the four main shapes of the price change weighting
function and indicates which combinations of a specific trading rule with a
specific type of moving average create which shape.

Table 5.1 Four main shapes of the price change weighting function in a trading rule
based on moving averages of prices

Shape of weighting function Trading rule Moving average type

Equal weighting MOM
�MA SMA

Decreasing P-MA SMA, LMA, EMA, TMA, EMA(EMA)
�MA LMA, EMA

Hump-shaped �MA TMA, EMA(EMA)
MAC SMA, LMA, EMA, TMA, EMA(EMA)

Damped waveform MAC DEMA, TEMA, HMA, ZLEMA
MACD SMA, LMA, EMA, DEMA, TEMA

Notes This table summarizes the four main shapes of the price change
weighting function and indicates which combinations of a specific trad-
ing rule with a specific type of moving average create which shape. For
example, a decreasing price changeweighting function (that overweights
the most recent price changes) can be created by the Price Minus Moving
Average (P-MA) rule where one of the followingmoving averages is used:
Simple Moving Average (SMA), Linear Moving Average (LMA), Exponen-
tial Moving Average (EMA), Triangular Moving Average (TMA), and Expo-
nential Moving Average of Exponential Moving Average (EMA(EMA)). As
an another example, a price changeweighting function that has a damped
waveform can be created using theMoving Average Crossover (MAC) rule
based on the followingmoving averages: Double Exponential Moving Av-
erage (DEMA), Triple Exponential Moving Average (TEMA), Hull Moving
Average (HMA), and Zero Lag Exponential Moving Average (ZLEMA)
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Appendix 5.A: Derivation of Formulas for
Weighting Functions

5.A.1 Price Change Weighting Functions in the MAC rule

The general formula for the computation of the value of the technical trading
indicator for the MAC(s, l) rule

IndicatorMAC(s,l)
t =

∑l−1
j=1

(∑l−1
i= j w

l
i

)
�Pt− j

∑l−1
i=0 wl

i

−
∑s−1

j=1

(∑s−1
i= j ws

i

)
�Pt− j

∑s−1
i=0 ws

i

.

(5.34)

If the Simple Moving Average is used (where wi = 1 for all i ) in both
moving averages, then

IndicatorSMAC(s,l)
t =

∑l−1
j=1

(∑l−1
i= j 1

)
�Pt− j

∑l−1
i=0 1

−
∑s−1

j=1

(∑s−1
i= j 1

)
�Pt− j

∑s−1
i=0 1

=
∑l−1

j=1(l − j)�Pt− j

l
−

∑s−1
j=1(s − j)�Pt− j

s

=
s−1∑
j=1

(
(l − j)

l
− (s − j)

s

)
�Pt− j +

l−1∑
j=s

(l − j)

l
�Pt− j

=
s−1∑
j=1

(l − s) j

l × s
�Pt− j +

l−1∑
j=s

(l − j)

l
�Pt− j . (5.35)

Observe that the price change weighting function consists of two parts. From
lag 1 to lag s − 1, the price change weighting function is given by (l−s) j

l×s . This
price change weighting function increases when j increases because l− s > 0.
From lag s till lag l − 1 the price change weighting function is given by (l− j)

l .
This price change weighting function decreases when j increases. It is easy to
check that the maximum weight is assigned to lag s. That is, the price change
�Pt−s has the largest weight in the computation of the weighted average of
price changes.

Now consider the computation of the technical trading indicator for the
MAC rule where the Exponential Moving Average is used in both moving
averages. Denote by λl and λs the decay factors in the longer and shorter
moving averages respectively. Recall that λl = l−1

l+1 whereas λs = s−1
s+1 . In this
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case the straightforward computations yield

IndicatorEMAC(s,l)
t =

∑∞
j=1

(∑∞
i= j λ

i
l

)
�Pt− j

∑∞
i=0 λil

−
∑∞

j=1

(∑∞
i= j λ

i
s

)
�Pt− j∑∞

i=0 λis

=
∑∞

j=1(1 − λl)
−1λ

j
l �Pt− j

(1 − λl)−1 −
∑∞

j=1(1 − λs)
−1λ

j
s�Pt− j

(1 − λs)−1

=
∞∑
j=1

(
λ
j
l − λ

j
s

)
�Pt− j . (5.36)

As the result, in this case the price change weighting function is given by

f ( j) = λ
j
l − λ

j
s , j ≥ 1.

This function is non-negative since λl > λs (because l > s). As j increases,
the function first increases, then decreases.To find the lag number at which the
function attains ist maximum, we use the first-order condition for maximum

f ′( j) = λ
j
l log(λl) − λ

j
s log(λs) = 0.

Solving this equation with respect to j yields

j =
log

(
log(λs)
log(λl )

)

log
(

λl
λs

) .

5.A.2 Price Change Weighting Functions in the MACD
rule

The computation of the technical trading indicator for theMACD rule is given
by

IndicatorMACD(s,l,n)
t = MACt (s, l) − EMAt(n, MAC(s, l)),

where MACt (s, l) is the technical trading indicator for the MAC rule

MACt (s, l) = EMAt(s) − EMAt(l),
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and EMAt(n, MAC(s, l)) is the exponential moving average of the MAC
trading indicator.

We know that, when Exponential Moving Averages are used, the compu-
tation of the technical trading indicator for the MAC rule can be written
alternatively as

MACt (s, l) =
∞∑
j=1

(
λ
j
l − λ

j
s

)
�Pt− j , (5.37)

where λl and λs denote the decay factors in the longer and shorter moving
averages respectively (λl = l−1

l+1 whereas λs = s−1
s+1 ). The exponential moving

average of the MAC trading indicator is computed as

EMAt(n, MAC(s, l)) = (1 − λ)

∞∑
i=0

λi M ACt−i (s, l),

where λ = n−1
n+1 is the decay factor in the EMA(n) and MACt−i (s, l) is the

lagged value of the MAC indicator given by

MACt−i (s, l) =
∞∑

j=i+1

(
λ
j−i
l − λ

j−i
s

)
�Pt− j .

Therefore the computation of EMAt(n, MAC(s, l)) can be written as

EMAt(n, MAC(s, l)) = (1 − λ)

∞∑
i=0

λi

⎛
⎝

∞∑
j=i+1

(
λ
j−i
l − λ

j−i
s

)
�Pt− j

⎞
⎠ .

(5.38)
We proceed by rewriting expression (5.38) as

EMAt (n, MAC(s, l)) = (1 − λ)

∞∑
i=0

⎛
⎝

∞∑
j=i+1

(
λ
j
l

(
λ

λl

)i

− λ
j
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(
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)i
)
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⎞
⎠ .
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Interchanging the order of summation in the double sum above yields

EMAt (n, MAC(s, l)) = (1 − λ)

∞∑
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(5.39)

The closed-form expressions for the sums of the two geometric sequences in
the formula above are given by
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Therefore the resulting expression for EMAt(n, MAC(s, l)) is as follows

EMAt(n, MAC(s, l)) = (1 − λ)

∞∑
j=1

[
λ
j
l − λ j

1 − λ
λl

− λ
j
s − λ j

1 − λ
λs

]
�Pt− j .

(5.40)
Combining expressions (5.37) and (5.40) yields the final expression for the
MACD rule

IndicatorMACD(s,l,n)
t =

∞∑
j=1

((
λ
j
l − λ

j
s

)
− (1 − λ)

[
λ
j
l − λ j

1 − λ
λl

− λ
j
s − λ j

1 − λ
λs

])
�Pt− j .

Again, we see that the computation of the technical indicator for a trading
rule based on moving averages can be written as the weighted average of price
changes

IndicatorMACD(s,l,n)
t =

∞∑
j=1

π j�Pt− j , (5.41)
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where π j is the weight of price change �Pt− j in the computation of the
weighted average. However, the weights π j cannot be normalized since the
sum of the weights equals zero

∞∑
j=1

π j =
∞∑
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j
l − λ

j
s

)
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j
l − λ j
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j
s − λ j
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])

= λl

1 − λl
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]
= 0.
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Part III

Performance Testing Methodology

The Set of Tested Trading Rules and their Abbreviations
In the rest of the book we are going to test the profitability of moving average
trading rules. A practical implementation of any trading rule, except the
Momentum rule, requires choosing a particular type of moving average.
Previously in this book we showed that there are many technical trading rules,
as well as there are many popular types of moving averages. As a result, there
exists a vast number of potential combinations of trading rules and moving
averages of prices.
The detailed examination of the anatomy of moving average trading rules,

presented in the preceding part of this book, suggests that any combination
(of a trading rule and a moving average) can be uniquely characterized by a
particular moving average of price changes. Luckily, despite a great number of
potential combinations, there are only four basic shapes of the weighting
function for price changes: equal, decreasing, humped form, and damped
waveform. In order to generate these most typical shapes of the weighting
function, we need, in principle, only three trading rules. Specifically, in the
Momentum1 rule (MOM(n)) all price changes have equal weights. The
Moving Average Crossover rule (MAC(s, l)) is able to generate both the
decreasing (when s ¼ 1) and hump-shaped form (when s[ 1) of the
price-change weighting function. Finally, in the Moving Average
Convergence/Divergence rule (MACD(s, l, n)), the shape of the price-change

1The Momentum rule is not a moving average trading rule in the conventional sense when one thinks in
terms of moving averages of prices. However, when one thinks in terms of moving averages of price
changes, the Momentum rule employs an equally-weighted average of price changes.
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weighting function resembles a damped waveform. In addition to these three
rules, we will also employ the Moving Average Envelope rule (MAE(n, p)).
The reason for using this rule is that both the MAC and MAE rules are
motivated by the same idea. Specifically, both of them are supposed to reduce
the number of whipsaw trades in the Price Minus Moving Average rule
(P-MA(n)).
In our study, we will use only ordinary moving averages: Simple Moving

Average (SMA), Linear Moving Average (LMA), and Exponential Moving
Average (EMA). This is because one does not need to employ exotic types of
moving averages in order to generate a required shape of the price-change
weighting function. Table III.1 lists the set of trading rules used in our study,
their abbreviations, and the shape of the price-change weighting function in
each rule. Note that the P-MA(n) rule is equivalent to the MAC(1, l) rule.
Whereas the price-change weighting function in this rule has a decreasing
shape, the MAC(s[ 1; l[ s) rule usually generates a humped shape of the
price-change weighting function. However, when the size of the shorter
window s approaches the size of the longer window l, the price-change
weighting function has an increasing shape. In contrast, when the size of the
shorter window approaches 1, the price-change weighting function has a
decreasing shape. That is, the MAC rule is able to generate three different
shapes of the price-change weighting function. It is difficult to tell the shape
of the price-change weighting function in the MAE(n; p[ 0) rule. However,
as the boundaries of the envelope approach the moving average (when
p ! 0), the price-change weighting function has a definite decreasing shape
because the MAE(n, 0) rule is equivalent to the P-MA(n) rule. Finally, the
shape of the price-change weighting function in the MACD rule resembles a
dumped waveform.

Table III.1 The set of trading rules, their abbreviations, and the shapes of their
price-change weighting functions.

Trading rule Moving average type Shape of weighting function

SMA LMA EMA
MOM - - - Equally-weighted
P-MA P-SMA P-LMA P-EMA Decreasing
MAC SMAC LMAC EMAC Hump-shaped
MAE SMAE LMAE EMAE -
MACD SMADC LMACD EMACD Damped waveform

104 Part III Performance Testing Methodology
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6
Transaction Costs and Returns to a Trading

Strategy

6.1 Transaction Costs in Capital Markets

In order to assess the real-life performance of a moving average trading strategy,
we need to account for the fact that rebalancing an active portfolio incurs
transaction costs. Transaction costs in capital markets consist of the following
three main components: half-size of the quoted bid-ask spread, brokerage fees
(commissions), and market impact costs. In addition there are various taxes
applicable in some equity markets, delay costs, opportunity costs, etc. (see, for
example, Freyre-Sanders et al. 2004). If investors sell securities they do not own
(short sale), then they also incur short borrowing costs. All investors face the
same bid-ask spreads andmarket-impact costs for a trade or short borrowing of
any given size and security at any given moment. In contrast, the commissions
(on purchase, sale, and short borrowing) are negotiated and depend on the
annual volume of trading, as well as on the investor’s other trading practices.
In order to model realistic transaction costs, one usually distinguishes between
two classes of investors (see, for example, Dermody and Prisman 1993): large
(institutional) and small (individual).

Large investors are defined as those who frequently make large trades in
blocks (of 10,000 shares) via the block trading desks or brokerage houses. Large
investors usually face transaction costs schedulewithnominimumfee specified.
Large traders typically make ongoing agreements with the trading desks or
brokerage houses to execute their trades for a flat institutional commission
rate that applies to any volume of trade. Thus, commissions paid by large
investors for trading a given stock are proportional to the number of shares
traded. But marginal market impact costs for a given stock rise in the number
of shares traded.

© The Author(s) 2017
V. Zakamulin, Market Timing with Moving Averages, New Developments
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Small investors are defined as those who use retail brokerage firms and often
trade in 100-share round lots. They can also trade odd lots. For small investors
there is a minimum fee on any trade. They face retail commission rates for a
given stock that decrease in the transaction size. Their total transaction costs,
therefore, exhibit decreasing rates for any given trade up to some particular
size. Individual investors pay substantially larger commissions than institution-
al investors. Specifically, whereas institutional investors usually pay very low
commissions of about 0.1% (or even less) of the volume of trade, Hudson et al.
(1996) report that individual investors pay commissions of about 0.5–1.5%.1

Market impact costs are closely related to liquidity: a relatively big order
exerts pressure on price and, consequently, transaction costs increase with in-
creasing order size. Market impact costs become a problem if an investor places
an order to buy or sell a quantity of shares that is large relative to a market
average daily share volume. Market impact costs are less significant with liquid
stocks.2 Liquidity refers to the ease with which a stock can be bought or sold
without disturbing its price. Market impact costs are further considered to be
the sum of two components: temporary and permanent price effects of trades.

Even such a brief review of the structure of transaction costs in capital
markets reveals that it is not easy to model realistic transaction costs. The
amount of transaction costs depends on the type of investor, liquidity of a
financial asset, and the volume of trade. In addition, the bid-ask spread is higher
during turbulent times and lower during calm times.That is, the bid-ask spread
depends also on the volatility of a financial asset. To simplify the treatment of
transaction costs, one usually assumes that transaction costs are proportional
to the volume of trade. However, strictly speaking, this assumption is valid
only for large investors who trade in liquid stocks. In this situation the quoted
bid-ask spread is the main component of transaction costs and the market
impact costs are negligible.
The formal treatment of the proportional transaction costs is as follows.We

denote the bid price of the stock at time t by Pbid
t and the ask price by Pask

t
such that Pbid

t < Pask
t . We suppose that Pt is the midpoint of the bid-ask

prices, and we denote by τ the half-size of the ratio of the quoted bid-ask
spread to the bid-ask price midpoint:

τ = Pask
t − Pbid

t

2Pt
.

1However, commissions for individual investors have dropped a lot after 2000. Unfortunately, we do not
have an updated reference on recent commissions.
2For example, large cap stocks are muchmore liquid than small cap stocks. As a result, not only the bid-ask
spread for large cap stocks is less than that for small cap stocks, but also market impact costs for trading
in large cap stocks are less than those for trading in small cap stocks.
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6 Transaction Costs and Returns to a Trading Strategy 107

Consequently, this allows us to interpret τ as proportional transaction costs
such that

Pbid
t = (1 − τ)Pt and Pask

t = (1 + τ)Pt .

Observe that the commissions that are proportional to the volume of trade can
easily be incorporated in τ .

For our study we need to find estimates of the average one-way transaction
costs in various capital markets. The problem is that the financial literature
reports different estimates of the average one-way transaction costs in stock
markets. Specifically, on the one hand, Berkowitz et al. (1988), Chan and
Lakonishok (1993), and Knez and Ready (1996) estimate the average one-
way transaction costs for institutional investors to be 0.25%. On the other
hand, Stoll and Whaley (1983), Bhardwaj and Brooks (1992), Lesmond et al.
(1999), Balduzzi and Lynch (1999), and Bessembinder (2003) document that
the average one-way transaction costs amount to 0.50%.3

The government bonds are more liquid securities as compared to stocks
and, therefore, the average bid-ask spread in bond trading is smaller than that
in stock trading. Chakravarty and Sarkar (2003) and Edwards et al. (2007)
estimate the average one-way transaction costs in trading intermediate- and
long-term bonds to be about 0.10%. Finally, theUSTreasury Bills ofmaturities
of 1–3 months are highly liquid securities with virtually zero bid-ask spread.
Therefore one usually assumes that buying and sellingTreasury Bills is costless.

6.2 Computing the Returns to a Trading
Strategy

The process of generation of a trading signal in all moving average trading rules
is considered in Sect. 4.1. In brief, denoting the time t value of a technical
trading indicator by Indicatort , a Buy signal is generated when the value of
the technical trading indicator is positive. Otherwise, a Sell signal is generated.
That is,

Signalt+1 =
{
Buy if Indicatort > 0,

Sell if Indicatort ≤ 0.

3Again, these references are probably outdated because after 2000 the liquidity in the stock markets has
improved. Unfortunately, we do not have updated estimates on the average bid-ask spread in the stock
markets. Therefore in our tests we employ the lower estimate for the average one-way transaction costs of
0.25%.
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Let (R1, R2, . . . , RT ) be the (total) returns on stocks, and let (r f 1,
r f 2, . . . , r f T ) be the risk-free rates of return over the same sample period.
A Buy signal is always a signal to invest in the stocks (or stay invested in the
stocks). When a Sell signal is generated, there are two alternative strategies.
Most commonly, a Sell signal is a signal to sell the stocks and invest the pro-
ceeds in cash (or stay invested in cash). In this case, in the presence of transaction
costs, the return to the market timing strategy over t + 1 is given by

rt+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Rt+1 if (Signalt+1 = Buy) and (Signalt = Buy),

Rt+1 − τ if (Signalt+1 = Buy) and (Signalt = Sell),

r f t+1 if (Signalt+1 = Sell) and (Signalt = Sell),

r f t+1 − τ if (Signalt+1 = Sell) and (Signalt = Buy),

(6.1)

where, recall, τ denotes the average one-way transaction costs in trading stocks
andwe assume that trading in the risk-free asset is costless.Note that if the signal
was Buy during the previous period and the signal is Buy for the subsequent
period, then the return to the moving average strategy (over the subsequent
period) equals the return on stocks. If the signal was Sell during the previous
period, money was kept in cash.When a Buy signal is generated, a trader must
buy stocks and therefore the return to the moving average strategy equals the
return on stocks less the amount of transaction costs.4 Similarly, if the signal
was Sell during the previous period and the signal is Sell for the subsequent
period, the return to the moving average strategy equals the risk-free rate of
return. If the signal was Buy during the previous period, money was invested in
stocks. When a Sell signal is generated, a trader must sell stocks and therefore
the risk-free rate of return for the subsequent period is reduced by the amount
of transaction costs.

Short selling stocks means borrowing some number of shares of a stock
with subsequent selling these shares in the market. At some later point in time
the short-seller must buy back the same number of shares and return them to
the lender. In the strategy where a trader shorts stocks when a Sell signal is
generated, the amount of transaction costs doubles. This is because, when a
Buy signal is generated after a Sell signal, a trader needs to buy some number
of shares of the stock in order to return them to the lender, and additionally
buy the same number of shares of the stock for personal investment. Similarly,
when a Sell signal is generated after a Buy signal, a trader needs to sell all
own shares of the stock and, right after selling own shares, sell short the same

4More exactly, since the transaction takes place at the close ask price Pask
t = (1 + τ)Pt , the return to

the moving average strategy equals Rt+1−τ
1+τ

. However, since 1 + τ ≈ 1, the expression Rt+1 − τ closely
approximates the real return.
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6 Transaction Costs and Returns to a Trading Strategy 109

number of shares of the stock. The proceeds from the sale and the short sale
are invested in cash and, as a result, during the period when the stocks are sold
short, the trader’s return equals twice the return on the risk-free asset. Overall,
in the presence of transaction costs, in this case the return to themoving average
strategy over t + 1 is given by

rt+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Rt+1 if (Signalt+1 = Buy) and (Signalt = Buy),

Rt+1 − 2 τ if (Signalt+1 = Buy) and (Signalt = Sell),

2 r f t+1 − Rt+1 if (Signalt+1 = Sell) and (Signalt = Sell),

2 r f t+1 − Rt+1 − 2 τ if (Signalt+1 = Sell) and (Signalt = Buy).
(6.2)

6.3 Chapter Summary

Following a passive buy-and-hold strategy involves no trading. However, every
active portfolio strategy requires continuous monitoring the market dynamics
and sometimes frequent rebalancing the composition of the active portfolio.
Even when the amount of transaction costs is relatively small, frequent trading
may incur large transaction costs and seriously deteriorate the performance of
the active strategy. Thus, transaction costs represent a very important market
friction that must be seriously taken into account while assessing the real-life
performance of a trading strategy. Unfortunately, the amount of transaction
costs is difficult to estimate because it depends onmany variables.Therefore, for
the sake of simplicity, one usually assumes that transaction costs are linearly
proportional to the volume of trade. However, even under this simplified
assumption it is very difficult to estimate the average transaction costs. In
stock markets, the estimate for the average one-way transaction costs varies
from 0.25 to 0.50% (25 to 50 basis points). On the bright side, the simplified
treatment of transaction costs allows one to easily incorporate the transaction
costs in the returns to the simulated trading strategy.
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7
Performance Measurement and

Outperformance Tests

7.1 Choice Under Uncertainty and Portfolio
Performance Measures

Using the historical data for the returns to the buy-and-hold strategy (for
example, the returns on a broad stock market index), {Rt }, and the risk-free
rates of return, {r f t }, the investor can easily simulate the returns to some
particular moving average trading strategy {rt }. The next problem is more
difficult: by comparing the properties of the two return series, {Rt } and {rt },
the investor needs to decide which strategy performed better than the other.
Unfortunately, there is no unique solution to this paramount problem because
of the uncertainty involved.That is, following each strategy involves risk taking;
each strategy can be considered as a distinct risky asset.

In the subsequent exposition, we briefly review how the choice of the best
risky asset (or a portfolio) is done within the framework of modern finance
theory. To generalize the exposition, we consider the investor’s choice between
two mutually exclusive risky portfolios A and B whose returns are denoted by
rA and rB respectively. In addition to the risky assets, finance theory usually
assumes the existence of a risk-free (or safe) asset. The interest rate on a short-
term Treasury Bill commonly serves as a proxy for the risk-free rate of return
denoted by r f . The role of the risk-free asset is to control the risk of the
investor’s complete portfolio1 through the fraction of wealth invested in the
safe asset. It is usually assumed that the investor can either borrow or save at
the risk-free rate and borrowing is not limited.

1In our exposition, we closely follow the exposition and terminology used in the introductory text on
investments by Bodie et al. (2007).
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The investor’s “capital allocation” consists of investing proportion a in the
risky asset ri (i ∈ {A, B}) and, consequently, 1− a in the risk-free asset. The
return on the investor’s complete portfolio is given by

r ic = a ri + (1 − a)r f = a(ri − r f ) + r f . (7.1)

Notice that if 0 < a < 1, the investor splits the wealth between the risky and
the risk-free asset. If a = 1, the investor’s wealth is placed in the risky asset
only. Finally, if a > 1, the investor borrows money at the risk free rate and
invests all own money and borrowed money in the risky asset.

If the investor chooses asset A, the investor’s final wealth is given by

WA = W0(1 + r Ac ),

whereW0 denotes the investor’s initial wealth. Similarly, if the investor chooses
asset B, the investor’s final wealth is given by

WB = W0(1 + r Bc ).

If the returns rA and rB were deterministic (that is, certain), then the choice
of the best asset would be very simple. In particular, the best asset would be
the asset which provides the highest rate of return.2 The choice of the best
asset becomes much more complicated when the returns are uncertain. As a
result, portfolio performance evaluation is a lively research area within modern
finance theory. Researchers have proposed a vast number of different portfolio
performance measures (see Cogneau and Hübner 2009, for a good review of
different performance measures). By a performance measure in finance one
means a score attached to each risky portfolio. This score is usually used for
the purpose of ranking of risky portfolios. That is, the higher the performance
measure of a portfolio, the higher the rank of this portfolio. The goal of any
investor who uses a particular performancemeasure is to select the portfolio for
which this measure is the greatest. Most of the proposed performancemeasures
are so-called “reward-to-risk” ratios. Below we review a few popular portfolio
performance measures and point to their advantages and disadvantages.

2It should be noted, however, that the existence of two assets with deterministic but different returns is
impossible because it creates profitable arbitrage opportunities.
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7.1.1 Mean Excess Return

At first sight it seems rather straightforward to assume that, when returns are
uncertain, the investor’s natural goal might be to choose the asset which max-
imizes the expected future wealth. That is, the investor can compare E[WA]
and E[WB], where E[·] denotes the expectation operator, and choose the asset
which provides the highest future expected wealth. In this case one can use the
mean excess return, E[ri − r f ] as a performance measure.

However, a closer look at this measure reveals a serious problem that consists
of the following. Since we assume that the investor’s goal is to maximize the
future expected wealth, the investor has to solve the following optimal capital
allocation problem

max
a

E[W0(1 + a(ri − r f ) + r f )].

When E[ri − r f ] > 0 and borrowing at the risk-free interest rate is not
limited, there is no solution to this problem because the higher the value of
a, the greater the investor’s future expected wealth. If the investor behaves as
though his objective function is to maximize the future expected wealth, such
an investor would be willing to borrow an infinite amount at the risk-free rate
and invest it in the risky asset. Thus, the mean excess return decision criterion
produces a paradox. In particular, a seemingly sound criterion predicts a course
of action that no actual investor would be willing to take.
Themean excess return of a risky asset, often termed as the “reward”measure,

is an important measure that characterizes the properties of a risky asset. The
other important characteristic of a risky asset is its measure of risk.The paradox
presented above appears because we assume that in making financial decisions
the investor ignores risk. When we assume that the goal of each investor is to
choose a risky asset that provides the best tradeoff between the risk and reward,
we arrive to a so-called “reward-to-risk” measure. Two of such measures are
considered below in the subsequent sections.
To recap, the great disadvantage of the mean excess return performance

measure is the ignorance of risk. However, because the notion of “risk” is an
ambiguous concept, the ignorance of risk makes this measure independent of
the investor’s risk preferences. Besides, the mean return criterion, E[ri ], can
also be used in the absence of a risk-free asset. This is advantageous because all
other rational reward-to-risk measures are constructed assuming the existence
of a risk-free asset. When there is no risk-free asset, the arguments behind the

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



114 V. Zakamulin

construction of rational reward-to-riskmeasures break down. Last but not least,
the rationale behind using themean excess returnmeasure is that in realmarkets
the borrowing is limited and, when it comes to individual investors, often just
impossible. When borrowing at the risk-free rate is limited or impossible, the
paradox produced by the mean excess return decision criterion disappears.

7.1.2 Sharpe Ratio

Modern financial theory suggests that the choice of the best risky asset depends
on the investor’s risk preferences that are generally described by a utility func-
tion defined over investor’s wealth. Unfortunately, the expected utility theory
(originally presented by von Neumann and Morgenstern 1944) is silent about
the shape of the investor’s utility function.The standard assumptions in finance
are that the utility function is increasing and concave in wealth. Still, there are
plenty of mathematical functions that satisfy these assumptions.

Under certain additional simplified assumptions,3 the investor’s utility func-
tion can be approximated by the mean-variance utility

U (W ) = E[W ] − 1

2
A × Var [W ], (7.2)

where Var [W ] is the variance of wealth and A is the investor’s coefficient
of risk aversion. It can be shown further that the mean-variance utility can
equivalently be computed over returns (see Bodie et al. 2007)

U (rc) = E[rc] − 1

2
A σ 2

c ,

where E[rc] and σ 2
c denote the mean and variance of returns, respectively, of

the investor’s complete portfolio. In this form, the investor’s utility function
motivates using the variance (or standard deviation) of returns as a riskmeasure.
The mean and standard deviation of the investor’s complete portfolio (see

Eq. 7.1) are given by

E[r ic] = aE[ri − r f ] + r f , σ i
c = aσi .

3The use of the mean-variance utility function can be justified when either return distributions are normal
or the investor is equipped with the quadratic utility function, see Tobin (1969) and Levy and Markowitz
(1979).
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The combination of these two equations yields the following relationship
between the expected return and the risk of the complete portfolio:

E[r ic] = r f + E[ri − r f ]
σi

σ i
c . (7.3)

Equation (7.3) says that there is a linear relation between the mean and stan-
dard deviation of returns of the investor’s complete portfolio. In the standard
deviation - mean return space, this strait line is called the Capital Allocation
Line (CAL). It depicts all risk-return combinations available to investors who
allocate wealth between the risk-free asset and risky asset i . The intercept and

the slope of the straight line equal r f and
E[ri−r f ]

σi
respectively.

William Sharpe (see Sharpe 1966, and Sharpe 1994) was the first to observe
that, in the mean-variance framework where investors can borrow and lend
at the risk-free rate, the choice of the best risky asset does not depend on the
investor’s attitude toward risk. Specifically, all investors regardless of their levels
of risk aversion choose the same risky asset: the asset with the highest slope
of the capital allocation line. Therefore the slope of the capital allocation line
can be used to measure the performance of a risky asset (or portfolio). William
Sharpe originally called this slope as “reward-to-variability” ratio. Later this
ratio was termed the “Sharpe ratio”:

SRi = E[ri − r f ]
σi

.

For the sake of illustration, Fig. 7.1 indicates the locations of two risky assets,
A and B, and the risk-free asset in the standard deviation - mean return space.
Notice that, as compared to asset A, asset B provides a higher mean return
with higher risk. Without the presence of the risk-free asset the choice the
best risky asset depends on the investor’s coefficient of risk aversion. More risk
averse investors tend to prefer asset A to asset B, whereas more risk tolerant
investor tend to prefer asset B to asset A. However, in the presence of the
risk-free asset the choice of the best risky asset is unique. Since the slope of the
capital allocation line through A is higher than that through B, all investors
prefer asset A to asset B. To realize this, suppose that the investor wants to
attain some arbitrary level of mean returns r∗. If the investor chooses asset A
for capital allocation, the risk-return combination of the investor’s complete
portfolio is given by point “a” that belongs to the capital allocation line through
asset A. In contrast, if the investor chooses asset B for capital allocation, the
risk-return combination of the investor’s complete portfolio is given by point
“b” that belongs to the capital allocation line through asset B. Obviously, since
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Fig. 7.1 The standard deviation - mean return space and the capital allocation lines
(CALs) through the risk-free asset r and two risky assets A and B

both combinations, “a” and “b”, have the same mean return but “a” is less risky
than “b”, any investor prefers “a” to “b”. Consequently, any investor chooses
asset A.

Even though the Sharpe ratio is a routinely used performancemeasure in the
situations where the investor has to choose a single risky asset from a universe
of many mutually exclusive risky assets, one has to keep in mind that the
justification of the usage of this ratio is based on many assumptions that can
be violated in reality:

• When return distributions are asymmetrical, the risk cannot be adequately
measured by standard deviation that penalizes equally losses and gains;

• In reality, borrowing at the risk-free rate is either restricted or just impos-
sible. In this case the investor cannot attain any arbitrary level of mean
returns. For example, in the illustration on Fig. 7.1 the investor cannot
attain r∗ using asset A in the capital allocation. As a consequence, risk
tolerant investors tend to prefer asset B even though it has a lower Sharpe
ratio;

• The assumption about the existence of a risk-free asset is very crucial.
Without the existence of a risk-free asset the choice of the best risky asset
is not unique. Strictly speaking, there are no risk-free assets in reality. For
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example, either the government that issues Treasury Bills may default, or
the investor has a long and uncertain investment horizon.

Last but not least, keep in mind that the goal of any investor is to maximize
the expected utility of future wealth. To attain this goal, investors need to solve
not one, but two optimization problems at the same time: (1) to choose the
optimal risky asset and (2) to choose the optimal capital allocation. If the risky
asset is chosen optimally, but the capital allocation is not optimal, the investor
fails to maximize the expected utility. Consequently, in some situations, by
using an inferior risky asset but allocating capital optimally, the investor can
achieve higher expected utility as compared to the case when the risky asset is
chosen optimally but is used in far from optimal capital allocation.

7.1.3 Sortino Ratio

The Sharpe ratio is often criticized on the grounds that the standard deviation
is not an adequate risk measure. In particular, the standard deviation penalizes
similarly both the downside risk and upside return potential. Many researchers
and practitioners argue that a proper risk measure must take into account only
downside risk. This argument might be relevant in our context. Specifically,
since a market timing strategy is supposed to provide downside protection and
upside participation, the use of the Sharpe ratio for performance measurement
of market timing strategies might be inappropriate.
The most known reward-to-risk performance measure that takes into ac-

count only the downside risk is the Sortino ratio (see Sortino and Price 1994).
Originally, the Sortino ratio was presented as an ad-hoc performance measure.
Subsequently, Pedersen and Satchell (2002) and Zakamulin (2014) presented
a utility-based justification of the Sortino ratio. In particular, these authors
showed that the Sortino ratio is a performance measure of investors that have
a mean-downside variance utility function.4 This utility function is similar to
the mean-variance utility function where variance σ 2 is replaced by downside
variance θ2. The downside variance of risky asset ri is computed as

θ2i = E
[
min(ri − r f , 0)

2
]
.

4It is worth noting that, whereas the mean-variance utility function can be justified on the grounds of
expected utility theory, the mean-downside variance utility function can be justified on the grounds of
behavioral finance theory, see Zakamulin (2014).
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Note that the downside variance is defined as the expected square deviation
below the risk-free rate of return. The resulting utility function is given by

U (rc) = E[rc] − 1

2
A θ2c .

Themean and downside standard deviation of the investor’s complete portfolio
are given by

E[r ic] = aE[ri − r f ] + r f , θ ic = aθi .

The combination of these two equations yields the following relationship be-
tween the expected return and the risk of the complete portfolio:

E[r ic] = r f + E[ri − r f ]
θi

θ ic . (7.4)

In the downside standard deviation - mean return space, this strait line can
be again called the Capital Allocation Line (CAL) that depicts all risk-return
combinations available to investors who allocate wealth between the risk-free
asset and risky asset i . As in the case where the risk is measured by standard
deviation, in the presence of the risk-free asset the choice of the best risky asset
does not depend on the investor’s risk preferences when the risk is measured by
downside standard deviation. The best risky asset is the asset with the highest
slope of the capital allocation line. This slope is best known as the “Sortino
ratio”:

SoRi = E[ri − r f ]
θi

.

It should be noted, however, that in the original definition of the Sortino ratio
(made by Sortino and Price 1994) the downside variance is computed using
an arbitrary return level k instead of the risk-free rate of return. That is, in the
original definition the downside variance is computed as E[min(ri − k, 0)2].
The problem is that when k �= r f , the capital allocation line is not a straight
line in the risk-reward space. As a result, the choice of the best risky asset
becomes dependent on the investor’s risk preferences.

As a final remark, it is worth mentioning that the only potential advantage
of the Sortino ratio over the Sharpe ratio is that the former employs a downside
risk measure. The Sortino ratio retains all the other weaknesses of the Sharpe
ratio. Specifically, the arguments that justify the use of the Sortino ratio break
downwhen either the borrowing at the risk-free rate is restricted or the risk-free
asset does not exist.
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7.2 Statistical Tests for Outperformance

7.2.1 Estimating Performance Measures

Denote by {rt } the series of returns to a moving average trading strategy over
some historical sample of size T . Over the same sample, the series of returns to
the buy-and-hold strategy and the risk-free rates of returns are given by {Rt }
and {r f t } respectively. Note that all performance measures presented in this
section are computed using the excess returns5

ret = rt − r f t , Re
t = Rt − r f t .

Themean excess return, the standard deviation of excess returns, and the down-
side standard deviation of the moving average trading strategy are estimated
using the following formulas:

r̄M A = r̄ e = 1

T

T∑
t=1

ret , σ̂MA =
√√√√ 1

T − 1

T∑
t=1

(ret − r̄ e)2, θ̂MA =
√√√√ 1

T − 1

T∑
t=1

min(ret , 0)2.

Subsequently, the Sharpe and Sortino ratios of the moving average trading
strategy are computed according to:

ŜRMA = r̄M A

σ̂MA
, ŜoRMA = r̄M A

θ̂MA
.

Similarly, the mean excess return, the Sharpe and Sortino ratios of the buy-
and-hold strategy are estimated. These performance measures are denoted by
r̄BH , ŜRBH , and ŜoRBH respectively.

Observe that a “bar” is placed over the mean excess return to indicate that
this is an estimator of the mean excess return, not the true value of the mean
excess return (for example, r̄M A is an estimator of rMA). Similarly, a “hat” is
placed over the standard deviation, downside standard deviation, the Sharpe
and Sortino ratios to indicate that all these values are estimators, not the true
values (for example, ŜRMA is an estimator of SRMA).

5See Sharpe (1994) who advocates that the standard deviation in the Sharpe ratio should be computed
using the excess returns.
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7.2.2 Formulating the Outperformance Hypothesis

Denote byM̂MA andM̂BH the estimated performance measures of the mov-
ing average trading strategy and the corresponding buy-and-hold strategy. The
first step in evaluating, whether the performance of the moving average strat-
egy is higher than the performance of the buy-and-hold strategy, is to subtract
the performance measure of the buy-and-hold strategy from the performance
measure of the moving average strategy. That is, to compute the following
difference that we call the “outperformance”:

�̂ = M̂MA − M̂BH .

Suppose that �̂ > 0. Can we conclude on this information alone that
the moving average strategy outperforms its passive counterpart? The answer
to this question is, in fact, negative. This is because the time series {ret } and{Re

t } can be considered as series of observations of two random variables. As
a result, the estimator �̂ is also a random variable and the outperformance
(the observation of �̂ > 0) can appear due to chance. To evaluate whether the
moving average strategy produces “true” outperformance, we need to carry out
a statistical test to see if the value of �̂ is statistically significantly above zero.
For this purpose we formulate the following null and alternative hypotheses
about the true value of outperformance (denoted by �):

H0 : � ≤ 0 versus HA : � > 0. (7.5)

In our context, a statistical hypothesis is a conjecture about the true value
of�. Note that any hypothesis test involves formulating two hypothesis: one is
called “null hypothesis” (denoted by H0) and the other “alternative hypothesis”
(denoted by HA). Both of the two hypotheses are defined asmutually exclusive.
A hypothesis test is a formal statistical procedure for deciding which of the two
alternatives, H0 or HA, is more likely to be correct. The result of a hypothesis
test leads to one of two decisions: either reject H0 (in favor of HA) or retain
H0. The decision “to reject or not to reject” H0 depends on how likely H0 to
be true.
The idea behind testing our hypothesis is as follows.Denote by δ a numerical

outcome of the random variable �. First, we learn the probability distribution
of � under the null hypothesis. As the result, we know the probability that
the random variable � takes on the particular value δ. If H0 is true, then a
random outcome δ ≥ �̂ (under condition that �̂ > 0) would rarely happen.
Consequently, the result of our hypothesis test is the probability of observing
δ ≥ �̂ under the null hypothesis. This probability is commonly called the
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“p-value”. For example, suppose that �̂ = 0.2 and the p-value of the test equals
3%. This means that, assuming the null hypothesis were true, the probability
of observing δ ≥ 0.2 equals 3%, which is highly unlikely. Therefore we can
reject H0 in favor of HA. If, on the other hand, the p-value of the test equals
30%, it means that the probability of observing δ ≥ 0.2 equals 30% which is
not “unusual enough”. In this case we cannot reject H0.

Another name for the p-value is the “statistical significance of the test”. The
smaller the p-value, themore statistically significant the test result.We can con-
clude that the moving average strategy “statistically significantly outperforms”
the buy-and-hold strategy if the p-value is low enough to warrant a rejection
of H0. Conventional statistical significance levels are 1%, 5%, and 10%. It is
worth mentioning that 1% significance level is a very tough requirement for
rejecting the null hypothesis. This means that the chance that the outperfor-
mance produced by the moving average strategy is a “false discovery” is less
than 1%.

7.2.3 Parametric Tests

A parametric test of hypothesis (7.5) is a test based on the assumption that ran-
dom variables ret and Re

t follow a specific probability distribution. Most often,
for the sake of simplicity, one assumes that these two random variables follow
a bivariate normal distribution. In other words, each of these two random vari-
ables follows a normal distribution and, besides, these two random variables
are correlated. This type of test is “parametric”, because each random variable
is assumed to have the same probability distribution that is parameterized by
mean and standard deviation.

A parametric hypothesis test is typically specified in terms of a “test statistic”.
A test statistic is a standardized value that is calculated from sample data.
This test statistic follows a well-known distribution and, thus, can be used to
calculate the p-value. In our context, because various performance measures
are computed differently, each specific performance measure requires using a
specific test statistics.The advantage of a parametric test is that one can calculate
the p-value of the test fast and quick. Unfortunately, not all performance
measures have theoretically computed test statistics. Whereas the mean excess
return and the Sharpe ratio have theoretically computed test statistics, the
Sortino ratio has not.

Using the mean excess return as a performance measure has some statistical
advantages. Specifically, the Central Limit Theorem in statistics says that as
long as the excess returns are independent and identically distributed, the
mean excess return becomes normally distributed if a sample is large enough.
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In this case, given ρ̂ as the estimated correlation coefficient between the two
series of excess returns, the test of the null hypothesis is performed using the
following test statistic

z = r̄M A − r̄BH√
1
T

(
σ̂ 2
MA − 2ρ̂σ̂MAσ̂BH + σ̂ 2

BH

) (7.6)

which is asymptotically distributed as a standard normal. This test statistic is
equivalent to the standard test statistics for testing the difference between two
population means in paired samples. Note that when the two excess return
series are not correlated (meaning that ρ = 0), the test statistics given by
Eq. (7.6) reduces to the standard test statistic for testing the difference between
two populationmeans in independent samples (see, for example, Snedecor and
Cochran 1989).

When the performance is measured by the Sharpe ratio, one can employ the
Jobson and Korkie (1981) test with the Memmel (2003) correction. This test
assumes the joint normality of the two series of excess returns and is obtained
via the test statistic

z = ŜRMA − ŜRBH√
1
T

[
2(1 − ρ̂) + 1

2(ŜR
2
MA + ŜR

2
BH − 2ρ̂2 ŜRMAŜRBH )

] , (7.7)

which is asymptotically distributed as a standard normal when the sample size
is large.

7.2.4 Non-Parametric Tests

Parametric tests are based on a number of assumptions. The standard assump-
tions are that return distributions are normal and stationary, without serial
dependency, and sample sizes are large. Unfortunately, these assumptions are
notmet in the real world. Specifically, the financial econometrics literature doc-
uments that empirical return distributions are non-normal and heteroscedastic
(that is, volatility is changing over time); often the series of returns exhibit serial
dependence. Consequently, the standard assumptions in parametric tests are
generally violated and, therefore, these tests are usually invalid.

Non-parametric tests do not require making assumptions about probabili-
ty distributions. Most often, non-parametric tests employ computer-intensive
randomization methods to estimate the distribution of a test statistic. Non-
parametric randomization tests are slower than parametric tests, but have nu-
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merous advantages. Besides the fact that they are distribution-free, these meth-
ods provide accurate results even if the sample size is small; the test statistic can
be chosen freely; the implementation of the test is simple and similar regardless
of the choice of a performance measure.
The “bootstrap” is the most popular computer-intensive randomization

method that is based on resampling the original data. The practical realiza-
tion of a bootstrap method depends crucially on whether the time series of
excess returns are assumed to be serially independent or dependent. We will
refer to the bootstrap method for serially independent data as the “standard
bootstrap”. The most popular bootstrap methods for serially dependent data
are “block bootstraps”.

7.2.4.1 Standard Bootstrap

The standard bootstrap method was introduced by Efron (1979). The method
is implemented by resampling the data randomly with replacement. In our
context, the data are represented by a paired sample of observations of excess
returns {ret } and {Re

t } where t = {1, 2, . . . , T }. This method consists in
drawing N random resamples tb = {sb1 , sb2 , . . . , sbT }, where b is an index for
the bootstrap number (so b = 1 for bootstrap number 1) and where each
of the time indices sb1 , s

b
2 , . . . , s

b
T is drawn randomly with replacement from

1, 2, . . . , T . Each random resample tb is used to construct the pseudo-time
series of the two excess returns {retb} and {Re

tb}. Notice that, because the pair(
re
sbi

, Re
sbi

)
(where i ∈ {1, T }) represents two original excess returns observed

at the same time, this method creates two pseudo-time series that retain the
historical correlation between the original data series. Observe also that the
number of observations in each resample equals the number of observations
in the original sample.

For each pseudo-time series of the two excess returns, the difference �̂b

between the estimated performance measures is computed. By repeating the
resampling procedure N times and calculating each time �̂b, the bootstrap
distribution of �̂ is constructed. Finally, to estimate the significance level for
the hypothesis test given by (7.5), one can count howmany times the computed
value of �̂b after randomization falls below zero. If the number of negative
values of �̂b in the bootstrapped distribution is denoted by n, the p-value of
the test is computed as n

N . It is worth noting that this p-value is computed
using a sort of “indirect” test of the null hypothesis. This is because the original
data are used that do not satisfy the null hypothesis. If one wanted to carry
out a “direct” test, one would have to resample from probability distributions
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that satisfied the constraint of the null hypothesis, that is, from some modified
data where the two empirical performance measure were exactly equal (see a
similar discussion in Ledoit and Wolf 2008).

7.2.4.2 Block Bootstrap

The standard bootstrap method assumes that the data are serially independent.
If the data are serially dependent, the standard bootstrap cannot be used be-
cause it breaks up the serial dependence in the data. That is, it creates serially
independent resamples. In order to preserve the dependence structure of the
original data series while performing a bootstrapmethod, one can resample the
data using blocks of data instead of individual observations. There are basically
two different ways of proceeding, depending onwhether the blocks are overlap-
ping or non-overlapping. Carlstein (1986) proposed non-overlapping blocks
for univariate time series data, whereas Künsch (1989) suggested overlapping
blocks in the same setting.We will refer to the former and the latter method as
the non-overlapping block bootstrap method and the moving block bootstrap
method respectively. The moving block bootstrap method, considered below,
is preferable because it can be used when the sample size is small relative to a
block length.6

Let l denote the block length. In the moving block bootstrap method, the
total number of overlapping blocks in a sample of size T equals T − l + 1,
where the i th block is given by time indices Bi = (i, i + 1, . . . , i + l − 1) for
1 ≤ i ≤ T − l + 1. Denote by m the number of non-overlapping blocks in
the sample (and each random resample) and suppose, for the sake of simplicity
of exposition, that T = m × l. In particular, m denotes the required number
of blocks that, when placed one after the other, create a sample of size T .
The block bootstrap method consists in drawing N random resamples tb =
{Bb

1 , B
b
2 , . . . , B

b
m} where each block of time indices Bb

i is drawn randomly
with replacement from among available blocks B1, B2, . . . , BT−l+1. As in the
standard bootstrap method, each random resample tb is used to construct the
pseudo-time series of the two excess returns {retb} and {Re

tb}. The computation
of the p-value of the null hypothesis also goes along similar lines as in the
standard bootstrap method.

By construction, in the moving block bootstrap method the bootstrapped
time series have a non-stationary (conditional) distribution. The resample be-
comes stationary if the block length is random. This version of the moving

6For the sake of illustration, suppose that the sample size is 30 and the block length is 5. In this case, there
are only 6 non-overlapping blocks of data in the sample. In contrast, the number of overlapping blocks
equals 26.
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block bootstrap is called the “stationary bootstrap” and was introduced by Poli-
tis and Romano (1994). In particular, unlike the original moving block boot-
strap method where the block length is fixed, in the stationary block bootstrap
method the length of block Bb

i , l
b
i , is generated from a geometric distribution

with probability p. Thus, the average block length equals 1
p . Therefore p is

chosen according to p = 1
l where l is the required average block length. The

i th block begins from a random index i which is generated from the discrete
uniform distribution on {1, 2, . . . , T }. Since a generated block length is not
limited from above, lbi ∈ [1,∞), and the block can begin with observation on
time T , the stationary bootstrap method “wraps” the data around in a “circle”,
so that 1 follows T and so on.
The question of paramount importance in the implementation of the block

bootstrap method is how to choose the optimal block length. The paper by
Hall et al. (1995) addresses this issue. The authors find that the optimal block
length depends very much on context. In particular, the asymptotic formula

for the optimal block length is l ∼ T
1
h , where h = 3, 4, or 5. For computing

block bootstrap estimators of variance, h = 3. For computing block bootstrap
estimators of one-sided and two-sided distribution functions of the test statistic
of interest, h = 4 and 5 respectively. Since our hypothesis test given by (7.5)
corresponds to one-tailed test, then, for example, if the number of observations

T = 1000, the optimal block length can be roughly estimated as 1000
1
4 ≈

6. Another method of selection of the optimal block length is proposed by
Politis andWhite (2004) (see also the subsequent correction of the method by
Patton et al. 2009).

7.3 Chapter Summary and Additional Remarks

Simulating the returns to a moving average trading strategy is trivial. In con-
trast, the question of whether the moving average strategy outperforms its
passive counterpart has no unique answer. The literature on portfolio per-
formance measurement starts with the seminal paper of Sharpe (1966) who
proposed a reward-to-risk measure now widely known as the Sharpe ratio.
However, since the Sharpe ratio uses the standard deviation as a risk measure,
it has been often criticized because, apparently, the standard deviation is not
able to adequately measure the risk. The literature on performance evalua-
tion, where researchers replace the standard deviation in the Sharpe ratio by
an alternative risk measure, is a vast one.
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However, there is another stream of research that advocates that the choice
of performance measure does not influence the evaluation of risky portfolios.
For example, Eling and Schuhmacher (2007), Eling (2008), and Auer (2015)
computed the rank correlations between the rankings produced by a set of
alternative performance measures (including the Sharpe ratio), and found that
the rankings are extremely positively correlated. These researchers concluded
that the choice of performance measure is irrelevant, since, judging by the
values of rank correlations, all measures give virtually identical rankings. The
explanation of this finding is given by Zakamulin (2011) who, among other
things, demonstrated analytically that many alternative performance measures
produce the same ranking of risky assets as the Sharpe ratio when return
distributions are normal. As a result, deviations from normality must be eco-
nomically significant to warrant using an alternative to the Sharpe ratio.

From a practical point of view, the findings in the aforementioned studies
advocate that the choice of a reward-to-risk performance measure is not crucial
in testing whether the moving average trading strategy outperforms the buy-
and-hold strategy. The Sharpe ratio is the best known and best understood
performance measure and, therefore, might be considered preferable to other
performance measures from a practitioner’s point of view. Yet, one has to keep
in mind that the justification of the Sharpe ratio, as well as any other sensible
reward-to-risk ratio, depends significantly on the assumptions of existence of
the risk-free asset and unrestricted borrowing at the risk-free rate.

It is important to understand that, in order to conclude that the mov-
ing average strategy outperforms its passive counterpart, it is not enough to
find that the estimated performance measure of the moving average strategy
is higher than that of the buy-and-hold strategy. One needs to verify statis-
tically whether the outperformance is genuine or spurious. In other words,
the outperformance is reliable only when the estimated performance measure
of the moving average strategy is statistically significantly higher than that of
the buy-and-hold strategy. To test the outperformance hypothesis, one can
use either parametric or non-parametric methods. Parametric methods are
fast and simple, but require making a number of assumptions that are usu-
ally not satisfied by empirical data. Non-parametric methods are computer-
intensive, but require fewer assumptions and more accurate. In testing the
outperformance hypothesis, the stationary (block) bootstrap method current-
ly seems to be the preferred method of statistical inference, see, among others,
Sullivan et al. (1999),Welch andGoyal (2008), andKirby andOstdiek (2012).
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8
Testing Profitability of Technical Trading Rules

8.1 Problem Formulation

The ultimate questionwewant to answer is whether somemoving average trad-
ing rules outperform the buy-and-hold strategy. If the answer to this question
is affirmative, then we want to know the types of rules that perform best. In
addition, there are many financial asset classes: stocks, bonds, foreign curren-
cies, real estate, commodities, etc. Therefore the natural additional question to
ask is in which markets the moving average trading rules are most profitable?
The difficulty in testing the profitability of moving average trading rules

stems from the fact that the procedure of testing involves either a single-
or multi-variable optimization. Specifically, any moving average trading rule
considered in Chap. 4 has at least one parameter that can take many possible
values. For example, in the Moving Average Crossover rule, MAC(s, l), there
are two parameters: the size of the shorter averaging window s and the size
of the longer averaging window l. As a result, testing this trading rule using
relevant historical data consists in evaluating performance of the same rule
with many possible combinations of (s, l). When daily data are used, the
number of tested combinations can easily exceed 10,000. Besides, there are
many types of moving averages (SMA, LMA, EMA, etc.) that can be used
in the computation of the average values in the shorter and longer windows.
This further increases the number of specific realizations of the same rule that
need to be tested. If one additionally considers other types of rules (MOM(n),
�MA(n), MACD(s, l, n), etc.) and several data frequencies (daily, weekly,
monthly), then one needs to test an exceedingly huge number of specific rules.
Themain problem in this case, when a great number of specific rules are tested,
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is not computational resources,1 but how to correctly perform the statistical
test of the outperformance hypothesis. Notice that in the preceding chapter
we considered how to test the outperformance hypothesis for a single specific
rule. Testing the outperformance hypothesis for a trading rule that involves
parameter optimization is much more complicated.

In the subsequent sections we review twomajor types of tests that are used in
finance to evaluate the performance of trading rules that require parameter op-
timization: back-tests (or in-sample tests) and forward tests (or out-of-sample
tests). Throughout the exposition, we focus on discussing the advantages and
disadvantages of each type of test.

8.2 Back-Testing Trading Rules

In our context, back-testing a trading rule consists in simulating the returns to
this trading rule using relevant historical data and checking whether the trad-
ing rule outperforms its passive counterpart. However, because each moving
average trading rule has at least one parameter, in reality, when a back-test is
performed, many specific realizations of the same rule are tested. In the end,
the rule with the best observed performance in a back-test is selected and its
outperformance is analyzed.This process of finding the best rule among a great
number of alternative rules is called “data-mining”.
The problem is that the performance of the best rule, found by using the

data-mining technique, systematically overstates the genuine performance of
the rule. This systematic error in the performance measurement of the best
trading rule in a back test is called the “data-mining bias”. The reason for
the data-mining bias lies in the random nature of returns. Specifically, it is
instructive to think about the observed outperformance of a trading rule as
comprising two components: the genuine (or true) outperformance and the
noise (or randomness):

Observed outperformance = True outperformance + Randomness.
(8.1)

The random component of the observed outperformance canmanifest as either
“good luck” or “bad luck”. Whereas good luck improves the true outperfor-
mance of a trading rule, bad luck deteriorates the true outperformance. It
turns out that in the process of data-mining the trader tends to find a rule that
benefited most from good luck.

1In reality, the computational resources are limited. Therefore when a huge number of specific strategies
are tested, one can easily stumble upon a lack of computer memory and/or a very slow execution time.
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Formal mathematical illustration of the data mining bias is as follows. Sup-
pose that the trader tests a single trading rule by simulating its returns over a
relevant historical sample. Suppose that the trader uses either the mean excess
return or the Sharpe ratio as performance measure and that the true perfor-
mance of the trading strategy equals the performance of its passive benchmark.
In other words, under our assumption, both strategies perform similarly. In
this case the z test statistic (given by either (7.6) or (7.7)) is normally dis-
tributed with zero mean and unit variance. The test of a single strategy is not
data-mining and, selecting the appropriate significance level α, the p-value of
a single test is given by

pS = Prob(z > z1−α), (8.2)

where z1−α is the 1 − α quantile of the standard normal distribution.2 If the
significance level α = 0.05, then pS = 5%. That is, the probability of “false
discovery” amounts to 5% in a single test.

Now suppose that the trader tests N independent strategies and the true
performance of each of these strategies equals that of the passive benchmark.
That is, we assume that all strategies perform similarly.3 Under these assump-
tions the test statistics for these N strategies are independent. Let us compute
the probability that with multiple testing at least one of these N strategies
produces a p-value below the chosen significance level α. This probability is
given by

pN = 1−Prob(z1 < z1−α; z2 < z1−α; . . . ; zN < z1−α) = 1−(1− pS)
N ,

(8.3)
where zi , i ∈ [1, N ], is the value of test statistic for strategy i . Notice that this
p-value, pN , is computed as one minus the probability that in all independent
tests the p-values are less than α. Since in a single test Prob(zi < z1−α) =
1 − pS and all tests are independent, the probability that in N independent
tests all p-values are less than α equals (1 − pS)N .

If in a single test pS = 5% and N = 10, then pN = 40.1%. That is, if the
trader tests 10 different strategies, then the probability that the trader finds at

2If �(x) is the cumulative distribution function of a standard normal random variable, the quantile
function �−1(p) is the inverse of the cumulative distribution function. The 1 − α quantile is given by
z1−α = �−1(1 − α). For example, if α = 5%, then z95% ≈ 1.64. That is, a standard normal random
variable exceeds 1.64 with probability of 5%. Thus, if in a single test the value of test statistics exceeds
1.64, the outperformance delivered by the active strategy is statistically significant at the 5% level.
3Note that our example is purely hypothetical where, by assumption, the true performance of all strategies
equals the performance of the passive benchmark. The goal of this hypothetical example is to illustrate
that in this situation there is a rather high probability that the trader falsely discovers that some strategies
statistically significantly outperform the benchmark.
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least one strategy that “outperforms” the passive benchmark is about 40%. If
N = 100, then pN = 99.4%. It implies the probability of almost 100% that
the trader finds at least one strategy that “outperforms” the passive benchmark
if the number of tested strategies equals 100. In the context of equation (8.1),
for all of the tested strategies in our example the true outperformance equals
zero. Consequently, the observed outperformance of each strategy is the result
of pure luck (randomness). Therefore the selected best strategy in a back test
is the strategy that benefited most from luck.
The data-mining technique is based on a multiple testing procedure which

greatly increases the probability of “false discovery” (Type I error in statistical
tests). That is, when more than one strategy is tested, false rejections of the
null hypothesis of no outperformance are more likely to occur; the trader more
often incorrectly “discovers” a profitable trading strategy.To deal with the data-
mining bias in multiple back-tests, one has to adjust the p-value of a single
test. Since the observed performance of the best rule in a back test is positively
biased, to estimate the true outperformance one has to adjust downward the
observed performance.4

In multiple testing, the usual p-value pS for a single test no longer reflects
the statistical significance of outperformance; the correct statistical significance
of outperformance is reflected by pN . If the test statistics are independent, the
adjusted p-value of a single test can be obtained by

p∗
S = 1 − (1 − pN )

1
N . (8.4)

For example, if N = 10 strategies are tested and pN = 5%, to reject the null
hypothesis that a trading strategy does not outperform its passive counterpart,
the p-value of the test statistic in a single test must be below 0.5%. If 100 s-
trategies are tested, the p-value of a single test must be below 0.05%. However,
in reality the returns to tested strategies are correlated. As a result, their test
statistics are dependent and the adjustment method must take into account
their dependence.5 Different methods of performing a correct statistical infer-
ence in multiple back-tests of trading rules are discussed in Markowitz and Xu
(1994),White (2000), Hansen (2005), Romano andWolf (2005), Harvey and
Liu (2014), Bailey and López de Prado (2014), and Harvey and Liu (2015).

4For example, a common practice in evaluating the true performance of the best rule in a back test is to
discount the reported Sharpe ratio by 50%, see Harvey and Liu (2015).
5If the test statistics are perfectly correlated, then the p-value in a multiple test equals the p-value in a single
test. Consequently, when the test statistics are neither independent nor perfectly correlated and the p-value

of a single test is given by pS , the adjusted p-value lies somewhere in between pS and 1 − (1 − pS)
1
N .
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The main advantage of back-tests is that they utilize the full historical data
sample. Since the longer the sample the larger the power of any statistical test,
back-tests decrease the chance of missing “true” discoveries, that is, the chance
of missing profitable trading strategies. However, because all methods of ad-
justing p-values in multiple tests try to minimize a Type I error in statistical
tests (probability of false discovery), this adjustment also greatly increases the
probability of missing true discoveries (Type II error in statistical tests). As an
example, suppose that a trading strategy truly outperforms its passive bench-
mark and the p-value of a single test is 0.1%. If the 5% significance level is
used, the outperformance of this strategy is highly statistically significant if not
outstanding. However, if, in addition to this strategy, the trader tests another
99 trading strategies, the trader has to use 0.05% significance level in a single
test (assuming that all test statistics are independent). As a result, in a multiple
test the outperformance of this strategy is no longer statistically significant.
The trader fails to detect this strategy with genuine outperformance, because
this strategy simply had a bad luck to be a part of a multiple test.

As final remarks regarding the back-tests and data-mining bias, it is worth
mentioning the following. The data-mining bias decreases when the sample
size increases. This is because the larger the sample size, the lesser the effect
of randomness in the estimation of performances of trading rules.6 The data-
mining bias increases with increasing number of rules. Adding a new tested
rule to the existing set of tested rules cannot decrease the performance of the
best rule in a back test. In particular, if the new rule performs worse than the
best rule among the existing set of rules, the performance of the best rule in
a back test remains the same. If, on the other hand, the new rule performs
better, then the new rule becomes the best performing rule.

8.3 Forward-Testing Trading Rules

Tomitigate the data-mining bias problem in back-testing trading rules, instead
of adjusting the p-value and/or performance of the best rule, an alternative
solution is to perform forward testing trading rules. The idea behind a forward
test is pretty straightforward: since the performance of the best rule in a back
test overstates the genuine performance of the rule, to validate the rule and to
provide an unbiased estimate of its performance, the rule must be tested using
an additional sample of data (besides the sample used for back-testing the rules).
In otherwords, a forward test augments a back testwith an additional validation
test. For this purpose the total sample of historical data is segmented into a

6However, this property holds true only when the market’s dynamics is not changing over time.
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“training” set of data and a “validation” set of data. Most often, the training
set of data that is used for data-mining is called the “in-sample” segment of
data, while the validation set of data is termed the “out-of-sample” segment.
In this regard, the back-tests are often called the “in-sample” tests, whereas the
forward tests are called the “out-of-sample” tests.
To understand the forward testing procedure, suppose that the trader wants

to forward test the performance of the Momentum rule MOM(n). The for-
ward testing procedure begins with splitting the full historical data sample
[1, T ] into the in-sample subset [1, s] and out-of-sample subset [s + 1, T ],
where T is the last observation in the full sample and s denotes the split point.
Then, using the training set of data, the trader determines the best window
size n∗ to use in this rule. Formally, the choice of the optimal n∗ is given by

n∗ = arg max
n∈[nmin,nmax]

M(re1,n, r
e
2,n, . . . , r

e
s,n),

where nmin and nmax are theminimum andmaximum values for n respectively,
M is the performance measure preferred by the trader, and (re1,n, r

e
2,n, . . . ,

res,n) are the excess returns to the Momentum rule with window size n over
the training dataset [1, s]. Finally, the best rule discovered in the mined data
(in-sample) is evaluated on the out-of-sample data.That is, the trader evaluates
the out-of-sample performance of the MOM(n∗) rule

Out-of-sample performance = M(res+1,n∗, res+2,n∗, . . . , reT,n∗),

where (res+1,n∗, res+2,n∗, . . . , reT,n∗) are the excess returns to the Momentum
rule with window size n∗ over the out-of-sample set of data [s + 1, T ].

In practical implementations of out-of-sample tests, the in-sample segment
of data is usually changed during the test procedure. Depending on the as-
sumption of whether or not the market’s dynamics is changing over time,
either expanding or rolling in-sample window is used. If the market’s dynam-
ics is stable, the best trading rule is not changing over time. Therefore, after a
period of length p ≥ 1, at time s+ p, the trader can repeat the best trading rule
selection procedure using a longer in-sample window [1, s + p]. Afterwards,
the procedure of selecting the best trading rule can be repeated at times s+2p,
s + 3p, and so on. Notice that, since the in-sample segment of data always
starts with observation number 1, the size of the in-sample window increases
with each iteration of the selection of best rule procedure.The rationale behind
using an expanding window in out-of-sample tests is the notion that the longer
the sample of data, the smaller the data-mining bias and, therefore, the better
precision in identifying the best trading rule.
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8 Testing Profitability of Technical Trading Rules 135

Observe the following sequence of steps in the out-of-sample testing proce-
durewith expanding in-samplewindow. First, the best parameters are estimated
using the in-sample window [1, s] and the returns to the best rule are simulat-
ed over the out-of-sample period [s + 1, s + p]. Next, the best parameters are
re-estimated using the in-sample window [1, s+ p] and the returns to the new
best rule are simulated over the out-of-sample period [s+ p+1, s+2p]. This
sequence of steps is repeated until the returns are simulated over the whole out-
of-sample period [s + 1, T ]. In the end, the trader evaluates the performance
of the trading strategy over the whole out-of-sample period.

However, if the trader believes that the market’s dynamics is changing over
time, the use of the expanding window is no longer optimal. Instead, a rolling
in-sample window must be used. The technique of using a rolling in-sample
window in a forward test is usually called a walk-forward test (or out-of-sample
test with a rolling/moving window). Specifically, after the initial determination
of the best trading rule over the data segment [1, s], the trader simulates the
returns to the trading rule over [s + 1, s + p], and then repeats the procedure
of selecting the best trading rule using a new in-sample window [1+ p, s+ p].
Notice that in this case the length of the in-sample window always equals s,
but with each iteration of the selection of best rule procedure, the in-sample
window is moved forward by step size p. The premise behind using a rolling
window in out-of-sample tests is the notion that, when market’s dynamics
is changing, the recent past is a better foundation for selecting trading rule
parameters than the distant past.

Figure 8.1 provides illustrations of the out-of-sample testing procedure with
an expanding in-sample window and a rolling in-sample window. It is worth
noting that the out-of-sample testing methodology with either an expanding
or rolling window has a dynamic aspect, in which the trading rule is being
modified over time as the market evolves. The out-of-sample methodology

Expanding window

IN−SAMPLE OOS

IN−SAMPLE OOS

IN−SAMPLE OOS

Historical data

Rolling window

IN−SAMPLE OOS

IN−SAMPLE OOS

IN−SAMPLE OOS

Historical data

Fig. 8.1 Illustration of the out-of-sample testing procedure with an expanding in-
sample window (left panel) and a rolling in-sample window (right panel). OOS denotes
the out-of-sample segment of data for each in-sample segment
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closely resembles the real-life trading where a trader, at each point in time,
has to make a choice of what trading rule to use given the information about
the past performances of many trading rules. Therefore an out-of-sample test
is not a test of whether some specific trading rule outperforms the passive
benchmark, but rather a test of whether the trader can beat the benchmark by
using a set of various rules and, at any time, following a strategy with the best
observed performance in a back test.
The great advantage of out-of-sample testing methods is that they, at least in

theory, should provide an unbiased estimate of the rule’s true outperformance.
An additional advantage is that the out-of-sample simulation of returns to a
trading strategy,with subsequentmeasurement of its performance, are relatively
easy to do as compared to the implementation of rather sophisticated perfor-
mance adjustment methods in multiple back-tests. However, out-of-sample
testing methods have one unresolved deficiency that may seriously corrupt the
estimation of the true outperformance of a trading rule.The primary concern is
that no guidance exists on how to choose the split point between the in-sample
and out-of-sample subsets. One possible approach is to choose the initial in-
sample segment with a minimum length and use the remaining part of the
sample for the out-of-sample test (see Marcellino et al. 2006, and Pesaran et
al. 2011). Another potential approach is to do the opposite and reserve a small
fraction of the sample for the out-of-sample period (as in Sullivan et al. 1999).
Alternatively, the split point can be selected to lie somewhere in the middle of
the sample.The problem is that when the in-sample segment is short, the data-
mining bias is substantial and researchers increase the chance of making “false”
discoveries. On the other hand, when the out-of-sample segment is short, the
statistical power of outperformance tests is reduced and researchers increase
the chance of not rejecting a false null hypothesis of no outperformance. In
any case, regardless of the choice of split point, the conventional wisdom says
that the out-of-sample performance of a trading strategy provides an unbiased
estimate of its real-life performance.

Yet recently the conventionalwisdomabout the unbiasednature of tradition-
al out-of-sample testing has been challenged. In the context of out-of-sample
forecast evaluation, Rossi and Inoue (2012) and Hansen and Timmermann
(2013) report that the results of out-of-sample forecast tests depend signifi-
cantly on how the sample split point is determined. In the context of out-
of-sample performance evaluation of trading rules, Zakamulin (2014) also
demonstrates that the out-of-sample performance of trend following strate-
gies depends critically on the choice of the split point. The primary argument
(put forward in the paper by Zakamulin 2014), for why the choice of the split
point sometimes dramatically affects the out-of-sample performance of a trend
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following strategy, lies in the fact that the outperformance delivered by any
trend following strategy is highly non-uniform. Generally, a trend following
strategy underperforms its passive benchmark during bull markets and shows
a superior performance during bear markets. This argument means that the
choice of the split point cannot be made arbitrary: researchers must ensure that
both the in-sample and out-of-sample segments contain alternating bull and
bear market periods (alternating periods of upward and downward trends). A
failure of not including both bull and bear periods into the in-sample segment
of data results in selecting a trading rule that is not “trained” to detect changes in
trends. Similarly, a failure of not including bear periods into the out-of-sample
segment of data results in erroneous rejection of “true” discoveries.7

Last but not least, the findings reported by Zakamulin (2014) also mean
that the traditional out-of-sample tests are not free from “data-mining” issues.
Specifically, using real historical data, Zakamulin provides an example where
he demonstrates that, depending on the choice of the split point, the out-
of-sample performance of a trend following rule might be either superior or
inferior as compared to that of its passive counterpart. Therefore, in principle,
a researcher might consider multiple split points and report the out-of-sample
performance that most favors a trading rule.

8.4 Chapter Summary and Additional Remarks

Each moving average trading rule considered in this book has from one to
three parameters which values are not pre-specified. In practical applications
of these rules, the trader has to make a choice of which specific parameters
to use. Therefore, traders inevitably tend to search over a large number of
parameters in the attempt to optimize a trading strategy performance using
relevant historical data. This procedure of selecting the best parameters to use
in a trading rule is called back-testing.

However, financial researchers long ago realized that when a large number
of technical trading rules are searched, this selection procedure tends to find
a rule which performance benefited most from luck (see, for example, Jensen
1967).Therefore the observed performance of the best rule in a back-test tends

7For example, Sullivan et al. (1999) use the period from 1987 to 1996 for out-of-sample tests and find that
no any technical trading rule outperforms the passive benchmark in out-of-sample test.However, thiswhole
out-of-sample historical period can be considered as a single long bull market. That is, virtually during
the whole out-of-sample period the stock prices trended upward. Since the outperformance delivered by
trend following rules appears as a result of protection from losses during bear markets, no wonder that
these researchers found that during a bull market no any technical trading rule outperforms.
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to systematically overestimate the rule’s genuine performance.8 This systematic
error is called the data-mining bias.Themethods of correcting the data-mining
bias appeared relatively recently; probably the first published paper on this
topic was the paper by Markowitz and Xu (1994). Unfortunately, one can still
find recently published papers in scientific journals where researchers employ
back-tests and document the observed performance of the best rules without
correcting for data-mining bias.

Besides the data-mining correction methods that adjust downward the per-
formance of the best trading rule in a back test, the other straightforward
method of the estimation of true performance of a trading rule is to employ a
validation procedure. The method of combination of a back-test with a sub-
sequent validation test is called a forward-test and was proposed already by
Jensen (1967). Another name for this test is an out-of-sample test. The appli-
cation of forward-testing trading rules started already in early 1970s. The first
applications of the so-called “walk-forward tests” that use a rolling training
window can be found in the papers by Lukac et al. (1988) and Lukac and
Brorsen (1990). Surprisingly, in the majority of studies that employ forward-
tests of trading rules, the researchers used either the commodity price data
or exchange rate data (see the review paper by Park and Irwin 2007). To the
best knowledge of the author, there are only two papers to date in which the
researchers implement forward tests of profitability of trading rules in stock
markets: Sullivan et al. (1999) and Zakamulin (2014).

As compared to pure back-tests, forward-tests with either expanding or
rolling in-sample window allow a trader to improve significantly the estimation
of true performance of trading rules and these procedures closely resemble
actual trader behavior. However, forward-tests are not completely superior to
back-tests in every respect. Since back-tests make use of the total sample of
data, the probability of missing a strategy with genuine outperformance is less
than in forward-tests. Forward-tests are supposed to be purely objective out-
of-sample tests with no data-mining bias, but in reality they may not be truly
out-of-sample. One possibility to corrupt the validity of a forward-test is to try
different split points (between the training and validation sets) and report the
results that favor most a trading strategy. Another possibility is to try different
starting points for a historical sample and choose the starting point that favors
most a trading strategy. Yet another possibility is to trymany different strategies
and report the results only for those strategies that pass the out-of-sample test.
The data-mining problem is, in fact, a part of a larger “data-snooping”

problem. As defined in the paper by White (2000) “Data-snooping occurs
when a given set of data is used more than once for purposes of inference or

8 Aronson (2006) explains in simple and plain language the cause of the data-mining bias.
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model selection”. The data-mining procedure in back-tests explicitly re-uses
the data many times in searching for the best performing rule. The notion of
“data-snooping” also covers the cases where researchers use, either explicitly or
implicitly, the results of prior studies of performances of trading rules reported
by other researchers. For example, in the studies by Brock et al. (1992), and
Siegel (2002, Chap. 17) the authors test the performance of the 200-day SMA
rule using the historical prices of the Dow Jones Industrial Average (DJIA)
index starting from the index inception in 1896. The authors acknowledge
that they test this rule because “it is one of the most popular trading rules
among practitioners”. It is quite natural to suppose that prior to these studies
practitioners back-tested many n-day SMA rules and the 200-day SMA rule
was selected as the rule with the best observed performance. In fact, the superior
performance of this rule was already documented by Gartley (1935) who also
used the prices of the DJIA index. Consequently, one can reasonably suspect
that the reported performance of the SMA rule (in the studies by Brock et al.
1992, and Siegel 2002) might be highly overstated as compared to its genuine
performance. Unfortunately, it is very difficult to fully avoid the data-snooping
problem in empirical studies. To fully avoid this problem requires either using
a completely new set of rules or using historical data that do not overlap with
the data used in previous studies.

Last but not least, the market’s dynamics can change over time. As a result,
a profitable rule in the past may not perform well in the future. Even if the
rule shows a superior performance in the past, the trader has to examine the
consistency of the rule performance over time. That is, the trader has to check
whether or not the outperformance deteriorates as time goes.There are way too
many examples when the superior performance of a trading rule is confined
to a single relatively short particular historical episode.
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9
Trading the Standard and Poor’s Composite

Index

9.1 Data

The Standard and Poor’s (S&P) 500 index is a value-weighted stock index based
on the market capitalizations of 500 large companies in the US. This index
was introduced in 1957 and intended to be a representative sample of leading
companies in leading industries within theUS economy. Stocks in the index are
chosen formarket size, liquidity, and industry group representation.This index
is probably the most commonly followed equity index and many consider it
one of the best representations of the US stock market. The S&P 500 index
appeared as a result of expansion of the Standard and Poor’s Composite index
that was introduced in 1926 and consisted of 90 stocks only. It is common
to extend the Standard and Poor’s Composite index back in time using the
data on the early stock price indices (examples are Shiller 1989, Campbell and
Shiller 1998, and Shiller 2000). However, it is worth noting that the data prior
to 1926 are less reliable because they are composed from various sources and
because of the scarcity of stocks relative to post-1926 data. Practically all of
these stocks belong to only two industry groups: “railroad” and “bank and
insurance”. Schwert (1990) constructed and made publicly available data on
the monthly return series for the US stock market beginning from 1802.

Unfortunately, the data for the risk-free rate of return are available from
1857 only. Therefore our full historical sample of monthly data covers the
period from January 1857 to December 2015 (159 full years). Nevertheless,
our dataset is the longest dataset used for testing moving average trading rules.
It should be noted, however, that while long history can provide us with rich
information about the past performance of moving average trading rules, the
availability of long-term data is both a blessing and a curse. This is because
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in order to use the observed performance over a very long-term as a reliable
estimate of the expected performance in the future, we need to make sure that
the stock market dynamics both in the distant and near past were the same.
For this purpose we perform a series of robustness tests and tests for regime
shifts in the stock market dynamics.

9.1.1 Data Sources and Data Construction

In our empirical studyweuse the capital gain and total returns (denoted byCAP
andTOTrespectively) on the Standard andPoor’sComposite stock price index,
as well as the risk-free rate of return (denoted by RF) proxied by the Treasury
Bill rate. Our sample period begins in January 1857 and ends in December
2015, giving a total of 1896 monthly observations. The data on the S&P
Composite index come from two sources. The returns for the period January
1857 to December 1925 are provided by William Schwert.1 The returns for
the period January 1926 to December 2015 are computed from the closing
monthly prices of the S&P Composite index and corresponding dividend data
provided by Amit Goyal.2 Specifically, the capital gain return is computed
using the closing monthly prices, whereas the total return is computed as the
sum of the capital gain return and the dividend return.
The Treasury Bill rate for the period January 1920 to December 2015 is

also provided by Amit Goyal. Because there was no risk-free short-term debt
prior to the 1920s, we estimate it in the same manner as in Welch and Goyal
(2008) using the monthly data for the Commercial Paper rates for New York.
These data are available for the period January 1857 to December 1971 from
the National Bureau of Economic Research (NBER) Macrohistory database.3

First, we run a regression

Treasury Bill ratet = α + β × Commercial Paper ratet + et

over the period from January 1920 to December 1971. The estimated regres-
sion coefficients are α = −0.00039 and β = 0.9156; the goodness of fit,
as measured by the regression R-squared, amounts to 95.7%. Then the val-
ues of the Treasury Bill rate over the period January 1857 to December 1919
are obtained using the regression above with the estimated coefficients for the
period 1920 to 1971.

1http://schwert.ssb.rochester.edu/data.htm.
2Downloaded from http://www.hec.unil.ch/agoyal/. These data were used in the widely cited paper by
Welch and Goyal (2008).
3http://research.stlouisfed.org/fred2/series/M13002US35620M156NNBR.
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9.1.2 Descriptive Statistics and Evidence for a Regime
Shift

Table 9.1 summarizes the descriptive statistics for the monthly returns on the
S&PComposite index and the risk-free rate of return.The descriptive statistics
are reported for the total historical period from January 1857 to December
2015 as well as for the first and second sub-periods: from January 1857 to
December 1943 and from January 1944 to December 2015 respectively. The
total sample period spans 159 years, the first and the second sub-periods span
87 and 72 years respectively. The choice of the split point between the sub-
periods is motivated by the analysis of a structural break in the growth rate of
the index (see below).
The results of the Shapiro-Wilk test reject the normality in all data series

over the total period as well as over each sub-period. It is worth noting that
over the first sub-period the stock market was much more turbulent than over
the second one. In particular, the volatility, as well as the kurtosis, during
the first sub-period was considerably higher than that during the second sub-
period. On the other hand, over the first sub-period the capital gain returns
and total returns were substantially lower than those over the second sub-
period. In addition, over the first sub-period the stock return series exhibited a
statistically and economically significant positive autocorrelation. In contrast,

Table 9.1 Descriptive statistics for the monthly returns on the S&P Composite index
and the risk-free rate of return

1857–2015 1857–1943 1944–2015
Statistics CAP TOT RF CAP TOT RF CAP TOT RF

Mean, % 5.88 10.29 3.88 3.94 9.13 3.75 8.23 11.69 4.04
Std. dev., % 17.50 17.51 0.75 19.72 19.72 0.60 14.36 14.40 0.90
Skewness 0.13 0.18 0.98 0.34 0.38 0.67 −0.42 −0.41 0.93
Kurtosis 7.99 8.20 2.60 8.46 8.68 4.45 1.58 1.60 1.06
Shapiro-Wilk 0.93 0.93 0.93 0.91 0.91 0.93 0.98 0.98 0.93

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
AC1 0.07 0.07 0.97 0.09 0.09 0.94 0.03 0.03 0.99

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.45) (0.41) (0.00)

Notes CAP, TOT, and RF denote the capital gain return, the total market return, and
the risk-free rate of return respectively. Means and standard deviation are annualized
and reported in percentages. Shapiro-Wilk denotes the value of the test statistics in the
Shapiro-Wilk normality test. The p-values of the normality test are reported in brackets
below the test statistics. AC1 denotes the first-order autocorrelation. For each AC1 we
test the hypothesis H0 : AC1 = 0. The p-values are reported in brackets below the values
of autocorrelation. Bold text indicates values that are statistically significant at the 5%
level
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over the second sub-period the autocorrelation in stock returns was neither
economically nor statistically significant.
The results reported inTable 9.1 suggest that the stockmarket mean (capital

gain and total) returns and volatilities were different across the two sub-periods.
To find outwhether these differences are statistically significant, we perform the
tests of the stability of mean returns and variances across the two sub-periods.
The results of these tests suggest that there is strong statistical evidence that
the variances of both the capital gain and total returns have changed over time
(see the subsequent appendix for the detailed description of the tests and their
results). Besides, whereas we cannot reject the hypothesis that the mean total
market return has been stable over time, we can reject the hypothesis about
the stability of the mean capital gain return over time.
Thereby our results advocate that there are economically and statistically

significant differences in the mean capital gain returns across the two sub-
periods of data. In particular, over the first sub-period the mean annual capital
gain returnwas about 4%,whereas over the second sub-period themean annual
capital gain return was approximately 8%. Consequently, over the second sub-
period the mean capital gain return on the S&P Composite index was double
as much as that over the first sub-period. Since the trading signal in all moving
average rules is computed using closing prices not adjusted for dividends,4

this finding may be of paramount importance for testing the performance of
trading rules.

In order to verify that there is a major break in the growth rate of the S&P
Composite index, we perform an additional structural break analysis. The goal
of this analysis is to test for the presence of a single structural break in the
growth rate of the S&P Composite index. The null hypothesis in this test is
that the period t log capital gain return on the S&P Composite index, rt , is
normally distributed with constant mean μ and variance σ 2. More formally,
rt ∼ N (

μ, σ 2
)
. Under this hypothesis the log of the S&P Composite index

at time t is given by the following linear model

log (It ) = log (I0) +
t∑

i=1

ri = log (I0) + μ t + εt ,

4In some published papers the trading signal is computed using the dividend-adjusted prices. However,
using dividend-adjusted prices is highly non-standard in traditional technical analysis. In particular, we
have studied many handbooks on the technical analysis of financial markets, beginning with the book by
Gartley (1935), and in every handbook a technical indicator is supposed to be computed using prices that
are easily observable in the market, in contrast to dividend-adjusted prices. Therefore in this book we stick
to the standard computation of trading signals. To be on the safe side, we replicated the analysis of the
profitability of moving average trading rules using the dividend-adjusted prices. The results of these tests
were qualitatively the same as those reported in this chapter. That is, replacing the prices not adjusted by
dividends with dividend-adjusted prices does not influence the conclusions reached in our study.
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Fig. 9.1 The log of the S&P Composite index over 1857–2015 (gray line) versus the
fitted segmented model (black line) given by log (It ) = log (I0) + μ t + δ (t − t∗)+ + εt ,
where t∗ is the breakpoint date, μ is the growth rate before the breakpoint, and μ + δ

is the growth rate after the breakpoint. The estimated breakpoint date is September
1944

where I0 is the index value at time 0 and εt ∼ N (
0, σ 2t

)
. Our alternative

hypothesis is that the mean log return at time t∗ changes from μ to μ + δ.
Under the alternative hypothesis the log of the S&P Composite index at time
t is given by the following segmented model

log (It ) = log (I0) + μ t + δ
(
t − t∗

)+ + εt ,

where (t − t∗)+ denotes the positive part of the difference (t − t∗).
The results of the structural break analysis reveal a strong evidence of the

presence of a major break in the growth rate of the S&P Composite index
around year 1944 (see the subsequent appendix for the detailed description of
the structural break analysis and its results). For the sake of illustration, Fig. 9.1
plots the log of the S&P Composite index versus the fitted segmented model.

Given the strong evidence on the occurrence of a major break in the growth
rate of the S&PComposite index around 1944, it is natural to ask the following
question. What caused this break? In other words, why the price of the S&P
Composite index has been growing much faster over the post-1944 period
than over the 87-year long period prior to 1944? As a matter of fact, the
answer to this question can be readily found in the book by the legendary
Benjamin Graham (1949). In particular, in the first part of his book Graham
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compares the investor’s situation in the early 1910s and late 1940s. Regarding
the investment practice in the early 1910s, Grahamwrites that most individual
investors bought exclusively high-quality corporate bonds that provided an
annual return of about 5%; the income from corporate bonds was fully tax-
exempt at that time. He commented further that “There was admittedly such
a thing as investment in common stocks; but for the ordinary investor it was
either taboo or practiced on a small scale and restricted to a limited number
of choice issues”. When investors did select some common stocks to invest in,
they preferred stocks that provided high and stable dividend income.
The investor’s situation underwent dramatic changes from the early 1910s

to the late 1940s (and also thereafter). Specifically:

• The rate of return on corporate bonds decreased dramatically as the result
of the US government needs to finance World War II. Specifically, the US
government faced with the need to raise funds far in excess of tax receipts
in order to finance the war effort. To make borrowing cheap, duringWorld
War II and thereafter, the Federal Reserve pledged to keep the interest rate
on Treasury Bills fixed at 0.375%. The rate of return on corporate bonds
fell to about 2.5%. The fixed income market in the US was deregulated
only in 1951, see Walsh (1993).

• The inflation increased dramatically as the result of deficit financing during
World War I and World War II. In particular, from 1913 to 1920 the
average annualized inflation rate was 11%, whereas from 1941 to 1948 the
average annualized inflation rate was 7%.5 Consequently, the rate of return
on bonds was way below the inflation rate.

• The interest on bonds, stock dividends, and capital gains became subject to
income tax. Specifically, the US government imposed taxes on bond income
and capital gains from 1914. Stock dividends were subject to income tax
from 1936 to 1939 and from 1953 and thereafter. Income on bonds and
stock dividendswas taxed at an individual’s income tax rate; the topmarginal
tax rate from 1935 to 1981 was at least 70%. In contrast, capital gains on
stocks held for more than six months were taxed at one-half, or less, of the
rate applicable to interest and dividends.

As a result of all these changes, investing in corporate bonds no longer made
sense for the ordinary individual investors; the return on bonds was far below
the inflation rate and this return was heavily taxed.The investors were attracted
to common stocks because of a fear of inflation and tax considerations.That is,
common stocks seemed to be a natural hedge against inflation. Because of tax

5These data are available online, see https://www.measuringworth.com/.
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considerations, the investors began to prefer stocks with greater capital gains
at the expense of dividend income. Buying high paying dividend common
stocks no longer made sense for wealthy investors; over 1940s and 1950s the
top marginal tax rate increased to about 90%.Therefore high paying dividend
stocks went out of favor, and stayed out of favor, beginning from the late 1930s.
As a result, firms started to gradually reduce the amount of dividends; dividend
payment was gradually replaced by share repurchase.
There is another factor (besides higher demand for stocks) that may pro-

vide an additional explanation for why the return on the S&P Composite
index increased beginning from the late 1940s. Specifically, the US govern-
ment substantially increased corporate taxes over 1930s and 1940s. Because
corporations pay taxes on their profits after interest payment is deducted, inter-
est expense reduces the amount of corporate tax firms must pay. This interest
tax deduction creates an incentive to use debt. Because of this incentive, the
debt of US corporations increased dramatically starting from the early 1940s.
The gain to investors from the tax deductibility of interest payments is com-
monly referred to as the “interest tax shield” (see any textbook on corporate
finance, for example, Berk and DeMarzo 2013). By increasing the debt, a firm
increases its leverage.6 With or without corporate tax, leverage increases the
return on equity.7

Everything considered, during 1940s the investors were attracted to stocks
because of the low rate of return on bonds, fear of inflation, and tax consider-
ations. Since capital gains were taxed at a much lower rate than dividends, the
investors were reluctant to buy stocks with high dividend yield; they preferred
buying stocks with large potential capital gains. Therefore beginning from the
early 1940s the dividend yield on the S&P Composite index decreased con-
siderably. Since the total return on the index increased while dividend yield
decreased, the capital gain return on the S&P Composite index increased sub-
stantially in the post-World War II era.

6The “debt-to-equity” ratio is a common ratio used to assess a firm’s leverage.
7For the explanation see, for example, Berk and DeMarzo (2013), Chap. 14. In brief, the return on levered
equity, rE is given by rE = rU + D

E (rU − rD), where rU is the return on un-levered equity, rD is the
interest on debt, and D

E is the debt-to-equity ratio. For example, if rU = 8% and there is no debt, then
the return on equity equals 8%. However, if the interest on debt is 4% and the debt-to-equity ratio equals
unity (that is, a firm is financed by equity and debt in equal proportions), then the return on equity
increases to 12%.
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9.2 Bull and Bear Market Cycles and Their
Dynamics

It is an old tradition to describe cycles in stock prices as bull and bear markets.
Unfortunately, there is no generally accepted formal definition of bull and bear
markets in finance literature. There is a common consensus among financial
analysts that a bull (bear) market denotes a period of generally rising (falling)
prices.However, when it comes to the dating of bull and bearmarkets, financial
analysts are broken up into two distinct groups. One group insists that in order
to qualify for a bull (bear) market phase, the stock market price should increase
(decrease) substantially. For example, the rise (fall) in the stock market price
should be greater than 20% from the previous local trough (peak) in order
to qualify for being a distinct bull (bear) market. The other group believes
that in order to qualify for a bull (bear) name, the stock market price should
increase (decrease) over a substantial period of time. For instance, the stock
market price should rise (fall) over a period of greater than 5months in order
to qualify for being a distinct bull (bear) market.

Since there is no unique definition of bull and bear markets, there is no
single preferred method to identify the state of the stock market. In our study,
to detect the turning points between the bull and bear markets, we employ the
dating algorithm proposed by Pagan and Sossounov (2003). This algorithm
adopts, with slight modifications, the formal dating method used to identify
turning points in the business cycle (Bry and Boschan 1971). The algorithm is
based on a complex set of rules and consists of two main steps: determination
of initial turning points in raw data and censoring operations. In order to
determine the initial turning points, first of all one uses a window of length
τwindow = 8months on either side of the date and identifies a peak (trough) as
a point higher (lower) than other points in the window. Second, one enforces
the alternation of turning points by selecting highest of multiple peaks and
lowest of multiple troughs. Censoring operations require: eliminating peaks
and troughs in the first and last τcensor = 6 months; eliminating cycles8 that
last less than τcycle = 16 months; and eliminating phases that last less than
τphase = 4 months (unless the absolute price change in a month exceeds
θ = 20%).9

8A cycle denotes two subsequent phases, either upswing and consequent downswing, or downswing and
consequent upswing.
9Gonzalez et al. (2005) use the same algorithm with τwindow = 6, τcycle = 15, and τphase = 5. Despite
the differences, the bull and bear markets in the study by Gonzalez et al. (2005) largely coincide with the
bull and bear markets in the study by Pagan and Sossounov (2003).

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



9 Trading the Standard and Poor’s Composite Index 151

It is worth noting that the algorithm of Bry and Boschan (1971) exploits
the idea that, in order to qualify for a distinct phase, the trend in the stock
market price should continue over a substantial period from the previous peak
or trough. There is another dating algorithm, proposed by Lunde and Tim-
mermann (2004), which is motivated by the idea that, in order to qualify for a
distinct bull or bear phase, the stock market price should change substantially
from the previous peak or trough. This dating rule is based on imposing a
minimum on the price change since the last peak or trough. Specifically, in
this rule one determines a scalar λ1 that defines the threshold of the movement
in stock prices that triggers a switch from a bear state to a bull state, and a
scalar λ2 that defines the threshold for shifts from a bull state to a bear state.
When λ1 = 15% and λ2 = 10%, the algorithm by Lunde and Timmermann
(2004) identifies more bull and bear phases than the algorithm by Pagan and
Sossounov (2003). However, the bull and bear markets identified by two dif-
ferent rules largely coincide. Our choice of using the dating algorithm by Pagan
and Sossounov (2003) is motivated by the following two considerations: this
algorithm seems to be more established and recognized in finance literature
than the other one, and it does not identify market phases that are relatively
short in duration.10

Table 9.2 reports the dates of the bull and bear markets over the total sample
period from January 1857 to December 2015. In addition, for each market
phase the table reports its duration (measured in the number of months) and
amplitude (defined as % change in the stock index price from the previous
peak or through). Figure 9.2 plots the natural log of the monthly Standard and
Poor’s Composite stock price index over the two sub-periods: 1857–1943 and
1944–2015. Shaded areas in the figure indicate the bear market phases.
Table 9.2, together with Fig. 9.2, clearly illustrates the major stock market

events over the recent 159-year history. The strongest and second-longest bull
market in history occurred during the so-called “Roaring Twenties” (August
1923 to August 1929, 295% amplitude, 73-month long), the decade that
followed World War I and led to the most severe and third-longest bear mar-
ket (September 1929 to June 1932, −85% amplitude, 34month long). The
second-largest and the longest bull market was named the “Dot-Com bubble”
and happened in the late 1990s (July 1994 to August 2000, 231% amplitude,
74-month long).The secondmost severe, but relatively short by duration, bear
market is known as the “Global Financial Crisis of 2007–2008” (November
2007 to February 2009, −50% amplitude, 16month long).

10The algorithm by Lunde andTimmermann (2004) usually produces many market phases with duration
of 2–3 months.
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Table 9.2 Bull and bear markets over the total sample period 1857–2015

Bull markets Bear markets
Dates Duration Amplitude Dates Duration Amplitude

Jan 1857–Oct 1857 10 −45
Nov 1857–Mar 1858 5 45 Apr 1858–Jun 1859 15 −15
Jul 1859–Oct 1860 16 57 Nov 1860–May 1861 7 −24
Jun 1861–Mar 1864 34 176 Apr 1864–Mar 1865 12 −26
Apr 1865–Oct 1866 19 18 Nov 1866–Apr 1867 6 −9
May 1867–Aug 1869 28 33 Sep 1869–Dec 1869 4 −1
Jan 1870–Apr 1872 28 21 May 1872–Nov 1873 19 −22
Dec 1873–Apr 1875 17 2 May 1875–Jun 1877 26 −39
Jul 1877–May 1881 47 119 Jun 1881–Jan 1885 44 −35
Feb 1885–Nov 1886 22 33 Dec 1886–Mar 1888 16 −16
Apr 1888–May 1890 26 18 Jun 1890–Jul 1891 14 −18
Aug 1891–Feb 1892 7 7 Mar 1892–Jul 1893 17 −38
Aug 1893–Aug 1895 25 25 Sep 1895–Aug 1896 12 −27
Sep 1896–Aug 1897 12 35 Sep 1897–Apr 1898 8 −7
May 1898–Apr 1899 12 34 May 1899–Jun 1900 14 −9
Jul 1900–Aug 1902 26 52 Sep 1902–Sep 1903 13 −29
Oct 1903–Jan 1906 28 63 Feb 1906–Oct 1907 21 −36
Nov 1907–Sep 1909 23 57 Oct 1909–Jul 1910 10 −18
Aug 1910–Sep 1912 26 13 Oct 1912–Jul 1914 22 −24
Aug 1914–Oct 1916 27 51 Nov 1916–Nov 1917 13 −31
Dec 1917–Oct 1919 23 29 Nov 1919–Aug 1921 22 −22
Sep 1921–Feb 1923 18 33 Mar 1923–Jul 1923 5 −14
Aug 1923–Aug 1929 73 295 Sep 1929–Jun 1932 34 −85
Jul 1932–Jan 1934 19 83 Feb 1934–Mar 1935 14 −21
Apr 1935–Feb 1937 23 95 Mar 1937–Mar 1938 13 −53
Apr 1938–Dec 1938 9 36 Jan 1939–Apr 1942 40 −38
May 1942–Jun 1943 14 52 Jul 1943–Nov 1943 5 −6
Dec 1943–May 1946 30 64 Jun 1946–Feb 1948 21 −24
Mar 1948–Jun 1948 4 11 Jul 1948–Jun 1949 12 −11
Jul 1949–Dec 1952 42 77 Jan 1953–Aug 1953 8 −12
Sep 1953–Jul 1956 35 112 Aug 1956–Dec 1957 17 −16
Jan 1958–Jul 1959 19 45 Aug 1959–Oct 1960 15 −10
Nov 1960–Dec 1961 14 29 Jan 1962–Jun 1962 6 −20
Jul 1962–Jan 1966 43 60 Feb 1966–Sep 1966 8 −16
Oct 1966–Nov 1968 26 35 Dec 1968–Jun 1970 19 −30
Jul 1970–Apr 1971 10 33 May 1971–Nov 1971 7 −6
Dec 1971–Dec 1972 13 16 Jan 1973–Sep 1974 21 −45
Oct 1974–Dec 1976 27 45 Jan 1977–Feb 1978 14 −15
Mar 1978–Nov 1980 33 58 Dec 1980–Jul 1982 20 −21
Aug 1982–Jun 1983 11 41 Jul 1983–May 1984 11 −7
Jun 1984–Aug 1987 39 115 Sep 1987–Nov 1987 3 −28
Dec 1987–May 1990 30 46 Jun 1990–Oct 1990 5 −15
Nov 1990–Jan 1994 39 49 Feb 1994–Jun 1994 5 −5
Jul 1994–Aug 2000 74 231 Sep 2000–Sep 2002 25 −43
Oct 2002–Oct 2007 61 75 Nov 2007–Feb 2009 16 −50
Mar 2009–Apr 2011 26 71 May 2011–Sep 2011 5 −16
Oct 2011–Dec 2015 51 63

Notes Duration is measured in the number of months. Amplitudes are defined as %
changes in the stock index prices (not adjusted for dividends)
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Fig. 9.2 Bull and bear markets over the two historical sub-periods: 1857–1943 and
1944–2015. Shaded areas indicate bear market phases

Table 9.3 reports the descriptive statistics of the bull and bear markets for
the whole period and the two sub-periods. Over the total period, there were
46 bull markets and 46 bear markets. The first sub-period contains 26 bull
markets and 27 bear markets. The second sub-period, which is shorter than
the first one, contains 20 bull markets and 19 bear markets. Over the whole
period, the average length of a bull market is close to 27 months, whereas the
average bear market length is close to 15 months. It is clear that bull markets
tend to be longer than bear markets and the durations of phases agree quite
closely with those reported by Pagan and Sossounov (2003) and Gonzalez et
al. (2005). The average bull market duration exceeds the average bear market
duration by a factor of 1.8. The comparison of the lengths of the two stock
market phases in the first and the second sub-period suggests that over time bull
markets tend to be longer while bear markets tend to be shorter. Specifically,

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



154 V. Zakamulin

Table 9.3 Descriptive statistics of bull and bear markets

1857–2015 1857–1943 1944–2015
Statistics Bull Bear Bull Bear Bull Bear

Number of phases 46 46 26 27 20 19
Minimum duration 4 3 5 4 4 3
Average duration 26.8 14.7 23.6 16.6 31.3 12.5
Median duration 26 14 23 14 30 12
Maximum duration 74 44 73 44 74 25
Average amplitude, % 59.9 −23.9 56.7 −27.0 63.7 −20.6
Average cum. return, % 89.6 −22.5 88.3 −24.9 90.3 −20.0
Mean monthly return, % 27.6 −21.4 30.5 −21.2 24.4 −21.6
Standard deviation, % 15.3 17.7 17.6 19.3 12.6 14.4

Notes Duration is measured in the number of months. Amplitudes are defined as %
changes in the stock index prices (not adjusted for dividends). Cumulative returns,
mean monthly return and the standard deviations are computed using the total return
(adjusted for dividends)

whereas for the first sub-period the ratio of the average bull market length to
the average bear market length amounts to 1.4, for the second sub-period this
ratio amounts to 2.5. In other words, this ratio has almost doubled over time.
On average, the stock index price increases by 60% during a bull market and
decreases by 24% during a bear market. Our results suggest that over time
the average amplitude of bull markets tends to increase whereas the average
amplitude of bear markets tends to decrease.

All bull markets exhibit positive mean return while all bear markets have
negativemean return. Interestingly, over the two sub-periods themeanmonthly
returns during bear markets were virtually identical. In contrast, the mean
monthly return during bull markets was higher in the first sub-period than in
the second one. There is economically significant time-variation in the value
of standard deviations of both bull and bear market returns across sub-periods
of data. Specifically, the market was much more volatile during the first sub-
period than during the second one. Somewhat surprisingly,11 even though
in each sub-period the volatility during bear markets was higher than that
during bull markets, the difference in volatilities across bull and bear markets
is economically insignificant (a similar result is reported by Gonzalez et al.
2005). As an illustration, in the second sub-period the standard deviation of
returns was slightly below 13% during bull markets and slightly above 14%
during bear markets. This finding implies that bull markets differ from bear
markets mainly in terms of mean returns, not in terms of standard deviation
of returns.

11It is customary to assume that a bear market is the low-return high-volatility state of the stock market,
whereas a bull market is the high-return low-volatility state of the market.
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9 Trading the Standard and Poor’s Composite Index 155

Our results, together with those obtained previously by Pagan and Sos-
sounov (2003) and Gonzalez et al. (2005), advocate that the properties of
cycles in stock prices have significantly changed over time. Yet so far we do not
have any scientific evidence of the presence of structural breaks in the param-
eters and dynamics of bull-bear cycles. Since the presence of structural breaks
might be of crucial importance for the ability of a moving average trading
strategy to outperform its passive counterpart, we analyze whether there are
statistically significant changes in the distribution parameters of bull and bear
markets over time.The results of these tests confirm the presence of a structural
break in the bull-bear dynamics (see the subsequent appendix for the detailed
description of the tests and their results). Specifically, we find statistical evi-
dence that the parameters of the bull and bear markets are different across the
two historical sub-periods.
The results of our two structural break analyses (in the growth rate of the

index and the dynamics of bull-bear markets) agree with each other and may
potentially have important implications for the performance ofmoving average
trading strategies. There is clear scientific evidence that the growth rate of the
S&P Composite index has increased in the post-1944 period. In addition,
we find evidence that the duration of bull markets has increased over time,
whereas the duration of bear markets has decreased over time. Consequently, as
compared with the first sub-period, over the second sub-period the index value
has been increasing faster and the stock market has been much more often in
the Bull state than in the Bear state. Since the superior performance of amoving
average trading strategy can appear only as the result of timely identification
of Bear market states and undertaking appropriate actions (switching to cash
or selling short), it is logical to deduce that we might observe a deterioration
in the performance of moving average trading rules (relative to that of the
market) over the second sub-period.

9.3 Reducing the Dimensionality of Testing
Procedure

Right from the start, we reduced the number of tested rules to 4 (MOM,
MAC, MAE, and MACD). We do not need more rules to generate the most
common shapes of the price-changeweighting function that is used to compute
the trading signal in a moving average rule.12 However, a practical realization
of 3 out of 4 rules requires choosing a particular moving average. Even though

12In fact, we need only theMOM,MAC, andMACD rules.We add theMAE rule in order to see whether
it outperforms the MAC rule; see the discussion in the beginning of the previous part of the book.
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we decided to employ only ordinary moving averages, the number of possible
combinations (of a trading rule and amoving average) becomes relatively large.
In addition, when a trading rule generates a Sell signal, there are two possible
actions: either move to cash or sell short the stocks. Finally, because there
are several alternative performance measures, the selection of the best trading
strategy may depend on the choice of performance measure. To reduce the
dimensionality of testing procedure, in this section we answer the following
questions: Does the choice of performance measure influence the selection of
the best trading strategy? Does the choice of moving average influence the
performance of the best trading strategy? Is it sensible to consider the strategy
with short sales?

9.3.1 Does the Choice of Performance Measure
Influence the Selection of Trading Strategy?

The most widely known performance measure is the Sharpe ratio, which is
a reward-to-risk ratio where the risk is measured by the standard deviation
of returns. The choice of the Sharpe ratio as a performance measure is fully
justifiedwhen returns are normally distributed.13 However, empirical literature
frequently documents that financial asset return distributions deviate from
normality. The results of our tests also suggest that we can reject the hypothesis
that the returns on the S&P Composite index are normally distributed (see
Sect. 9.1).When return distributions are non-normal, it is commonly believed
that the performance cannot be adequately evaluated using the Sharpe ratio.
As a result of this belief, researchers have proposed a vast number of different
performancemeasures that try to take into account the non-normality of return
distributions (see, for example, Cogneau and Hübner 2009, for a good review
of different performance measures).

Specifically, the Sharpe ratio is often criticized on the grounds that the
standard deviation appears to be an inadequate measure of risk. In particular,
the standard deviation similarly penalizes both the downside risk and the upside
return potential. Because a moving average trading strategy is supposed to
provide downside protection and upside participation, it is natural to think
that the Sharpe ratio is inappropriate for the performance measurement of
these strategies. The Sortino ratio (see Sortino and Price, 1994), which uses
downside deviation as a risk measure, seems to be a much more reasonable
performance measure than the Sharpe ratio.

13Yet, recall that the justification of the Sharpe ratio is based on a number of additional assumptions.
Besides the normality of return distributions, one has to assume the existence of a risk-free asset and the
absence of any limitations on borrowing and lending.
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However, there is another stream of research that advocates that the choice
of performance measure does not influence the evaluation of risky portfolios.
For example, Eling and Schuhmacher (2007), Eling (2008), and Auer (2015)
computed the rank correlations between the rankings produced by a set of
alternative performance measures (including the Sharpe ratio), and found that
the rankings are extremely positively correlated. To check whether the choice
of performance measure influences the selection of the best trading strategy, we
conduct an empirical study to shed light on the issue of performance measure
choice in the context of moving average trading strategies.

Our empirical study is conducted in the following manner. First, we select a
simple trading rule (MOM(n), P-SMA(n), P-LMA(n), or P-EMA(n)) whose
performance depends on the choice of a single parameter, n, the size of the
window used to compute the trading signal. Then we simulate the returns
to this trading rule over the total historical sample and different values of
n beginning from nmin = 2 and ending with nmax = 25 (and accounting
for 0.25% one-way transaction costs). That is, we simulate the returns to
24 different trading strategies. Next, we select a performance measure (Mean
excess return, Sharpe ratio, or Sortino ratio), evaluate the performance of each
trading strategy (over the period from January 1860 to December 2015), and
rank each trading strategy. Specifically, the best performing strategy is assigned
rank 1, the next best performing strategy is assigned rank 2, and so on down
to 24. The outcome of this procedure is three sets of ranks; ranks according to
the Mean excess return performance criterion, ranks according to the Sharpe
ratio criterion, and ranks according to the Sortino ratio criterion. Finally, we
calculate rank correlations between these sets of ranks. Following Eling and
Schuhmacher (2007), Eling (2008), and Auer (2015) we use the Spearman
rank correlation coefficients ρ as a nonparametric measure of rank correlation.
As for any correlation coefficient, the value of ρ is restricted to lie within two
boundaries −1 ≤ ρ ≤ 1. If two sets of ranks are identical, then ρ = 1. If two
sets of ranks are completely different, then ρ = −1.

For each trading rule in this study, Table 9.4 reports the Spearman rank cor-
relation coefficients between three alternative performance measures. Appar-
ently, all performancemeasures display a very high rank correlationwith respect
to each other. The rank correlation coefficient varies between 0.97 and 1.00.
For the sake of illustration of ranking of different trading strategies, Table 9.5
lists the top 10 strategies according to each performance measure. It is worth
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Table 9.4 Rank correlations based on different performance measures

MOM P-SMA
Excret Sharpe Sortino Excret Sharpe Sortino

Excret 1.00 1.00
Sharpe 0.99 1.00 0.99 1.00
Sortino 0.99 0.99 1.00 0.97 0.99 1.00

P-LMA P-EMA
Excret Sharpe Sortino Excret Sharpe Sortino

Excret 1.00 1.00
Sharpe 1.00 1.00 1.00 1.00
Sortino 1.00 1.00 1.00 0.98 0.98 1.00

Notes For each trading rule (MOM(n), P-SMA(n), P-LMA(n), and P-EMA(n)), this table
reports the Spearman rank correlation coefficients between three alternative perfor-
mance measures: Mean excess returns (Excret), Sharpe ratio (Sharpe), and Sortino ratio
(Sortino). The values are rounded to the second decimal place. Because of the symmetry
of the correlation matrix, we do not report its upper-right triangle

noting that the trading strategies in this list are the best trading strategies in
a back test. Observe, for example, that the P-SMA(12) strategy appears to be
the best trading strategy (among all tested P-SMA(n) strategies) in a back test
regardless of the measure used to evaluate the performance. The most popular
among practitioners P-SMA(10) strategy is also among the top 10 best strate-
gies, but its rank depends on the choice of performance measure. Also observe
that according to the results reported inTable 9.4, all rank correlations amount
to 1.00 for the P-LMA(n) rule. However, the list of the top 10 P-LMA(n)

strategies in Table 9.5 suggests that the ranks are not fully identical. The expla-
nation for this seemingly conflicting information reported in these two tables
is that we round the values of rank correlations to the second decimal place. In
reality, when a rank correlation between two performance measures is reported
to be 1.00, its value lies in between 0.995 and 1.000.
The main conclusion that we can draw from this empirical study is that

the choice of performance measure does not affect the ranking of moving
average trading strategies as much as one would expect after studying the
performance measurement literature. Our findings are in complete agreement
with the findings reported previously by Eling and Schuhmacher (2007), Eling
(2008), and Auer (2015). The implications of our results are as follows. From
a practical point of view, the choice of performance measure does not have a
crucial influence on the relative evaluation ofmoving average trading strategies.
Taking into account that the Sharpe ratio is the best known andbest understood
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Table 9.5 The top 10 strategies according to each performance measure

MOM P-SMA
Rank Excret Sharpe Sortino Excret Sharpe Sortino

1 MOM(11) MOM(6) MOM(6) P-SMA(12) P-SMA(12) P-SMA(12)
2 MOM(6) MOM(11) MOM(11) P-SMA(15) P-SMA(15) P-SMA(15)
3 MOM(8) MOM(8) MOM(8) P-SMA(17) P-SMA(16) P-SMA(16)
4 MOM(10) MOM(9) MOM(10) P-SMA(16) P-SMA(17) P-SMA(10)
5 MOM(12) MOM(10) MOM(9) P-SMA(14) P-SMA(14) P-SMA(17)
6 MOM(9) MOM(13) MOM(12) P-SMA(13) P-SMA(11) P-SMA(11)
7 MOM(13) MOM(12) MOM(5) P-SMA(11) P-SMA(10) P-SMA(14)
8 MOM(5) MOM(5) MOM(7) P-SMA(18) P-SMA(13) P-SMA(13)
9 MOM(7) MOM(7) MOM(13) P-SMA(10) P-SMA(18) P-SMA(18)
10 MOM(14) MOM(14) MOM(16) P-SMA(19) P-SMA(9) P-SMA(9)

P-LMA P-EMA
Rank Excret Sharpe Sortino Excret Sharpe Sortino
1 P-LMA(22) P-LMA(22) P-LMA(22) P-EMA(13) P-EMA(13) P-EMA(13)
2 P-LMA(20) P-LMA(20) P-LMA(20) P-EMA(14) P-EMA(14) P-EMA(11)
3 P-LMA(24) P-LMA(21) P-LMA(21) P-EMA(12) P-EMA(11) P-EMA(14)
4 P-LMA(21) P-LMA(24) P-LMA(24) P-EMA(11) P-EMA(12) P-EMA(12)
5 P-LMA(23) P-LMA(23) P-LMA(23) P-EMA(15) P-EMA(10) P-EMA(10)
6 P-LMA(25) P-LMA(18) P-LMA(18) P-EMA(10) P-EMA(15) P-EMA(15)
7 P-LMA(18) P-LMA(25) P-LMA(25) P-EMA(9) P-EMA(8) P-EMA(8)
8 P-LMA(17) P-LMA(19) P-LMA(19) P-EMA(8) P-EMA(9) P-EMA(9)
9 P-LMA(19) P-LMA(17) P-LMA(17) P-EMA(16) P-EMA(16) P-EMA(7)
10 P-LMA(16) P-LMA(16) P-LMA(16) P-EMA(17) P-EMA(7) P-EMA(16)

Notes For each trading rule (MOM(n), P-SMA(n), P-LMA(n), and P-EMA(n)), this table
reports the top 10 strategies according to three alternative performance measures:
Mean excess returns (Excret), Sharpe ratio (Sharpe), and Sortino ratio (Sortino). The
performance of all strategies is evaluated over the period from January 1860 to Decem-
ber 2015

performance measure, it might be considered superior to other performance
measures from a practitioner’s point of view. We thus conclude that from a
practical point of view the choice of performance measure does not influence
the ranking of trading strategies. In the subsequent analysis, we will employ
only the Sharpe ratio for measuring the performance of trading strategies.

9.3.2 To Short or Not to Short?

When a newmonthly closing price becomes available, amoving average trading
rule generates the trading signal (Buy or Sell) for the subsequent month. A Buy
signal is always a signal to invest in the stocks or stay invested in the stocks.
When a Sell signal is generated after a Buy signal, there are two alternative
strategies: either (1) sell the stocks and invest the proceeds in cash or (2) sell
the stocks, additionally sell short the stocks, and invests all proceeds (from the
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sale and short sale) in cash. If a moving average trading rule correctly predicts
bear markets, the first strategy just protects the trader from losses, whereas the
second strategy allows the trader to profit from a drop in stock prices. However,
if the precision of identification of bear markets is low, the trader often loses
money on short sales. Therefore the first strategy possesses an advantage over
the second strategy when market timing is poor.
To find out whether it is sensible to consider the strategy with short sales

in in-sample and out-of-sample tests, the following empirical study is con-
ducted. First, we simulate the returns to two simple trading rules, MOM(n)

and P-SMA(n), with and without short sales. The returns to different trading
strategies are simulated over the total historical sample and different values of n
beginning from nmin = 2 and ending with nmax = 25 (accounting for 0.25%
one-way transaction costs). Next, using the Sharpe ratio as performance mea-
sure, we evaluate to which extent each trading strategy outperforms the passive
strategy. Formally, for each strategy we compute � = SRMA − SRBH where
SRMA and SRBH are the Sharpe ratios of the moving average strategy and
the buy-and-hold strategy respectively. Finally, we rank each trading strategy
according to its outperformance, from best to worst.
Table 9.6 reports the top 10 strategies for each trading rule. Specifically, the

left panel in the table reports the performance of the top 10 trading strategies
without the short sales, whereas the right panel reports the performance of the
top 10 trading strategies with short sales. Obviously, the results reported in this
table clearly suggest that short sales significantly deteriorate the performance of
trading rules. In particular, whereas all top 10 trading strategies without short
sales outperform the buy-and-hold strategy, all top 10 trading strategies with
short sales underperform the buy-and-hold strategy. It is worth mentioning
that the performance of all strategies in this empirical study was evaluated
using the in-sample methodology. Consequently, with short sales even the
best trading rule in a back test fails to outperform the passive benchmark.
Since the in-sample performance of any trading rule overestimates its real-life
performance, we can confidently say that the out-of-sample performance of
trading rules with short sales is inferior to the performance of the buy-and-hold
strategy.

In the end of this section we would like to elaborate a bit more on the
practical implications of our results. In order a trading strategy with short sales
to outperform its counterpart without short sales, near-perfect market timing
is required. Since our results show that the performance of strategies with short
sales is much poorer than that of the strategies without short sales, this finding
suggests that even in a back test the best trading strategy identifies the bull and
bear market phases with poor accuracy.Why this accuracy is poor? The answer
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Table 9.6 Comparative performance of trading strategies with and without short sales

Switch to Cash Sell Short
Rank Strategy � Strategy �

Momentum rule
1 MOM(6) 0.15 MOM(11) −0.04
2 MOM(11) 0.14 MOM(6) −0.06
3 MOM(8) 0.13 MOM(8) −0.10
4 MOM(9) 0.09 MOM(10) −0.10
5 MOM(10) 0.09 MOM(12) −0.12
6 MOM(13) 0.07 MOM(9) −0.14
7 MOM(12) 0.07 MOM(13) −0.14
8 MOM(5) 0.07 MOM(5) −0.17
9 MOM(7) 0.07 MOM(7) −0.17
10 MOM(14) 0.04 MOM(14) −0.19

Price-SMA rule
1 P-SMA(12) 0.15 P-SMA(12) −0.06
2 P-SMA(15) 0.14 P-SMA(15) −0.07
3 P-SMA(16) 0.14 P-SMA(17) −0.07
4 P-SMA(17) 0.13 P-SMA(16) −0.07
5 P-SMA(14) 0.13 P-SMA(14) −0.08
6 P-SMA(11) 0.13 P-SMA(13) −0.08
7 P-SMA(10) 0.13 P-SMA(11) −0.09
8 P-SMA(13) 0.13 P-SMA(18) −0.09
9 P-SMA(18) 0.12 P-SMA(10) −0.10
10 P-SMA(9) 0.10 P-SMA(19) −0.12

Notes The performance of all strategies is evaluated over the period from January 1860
to December 2015. � = SRMA − SRBH where SRMA and SRBH are the Sharpe ratios of
the moving average strategy and the buy-and-hold strategy respectively. The Sharpe
ratio of the buy-and-hold strategy amounts to 0.39

can be provided by examining the timing properties of the best trading strategy
in a back test. Let us consider the best trading strategy in the P-SMA(n) rule.
In the best trading strategy the size of the averaging window amounts to 12
months. That is, in this strategy the trend in the stock price is detected using
the 12-month simple moving average.We know from Chap. 3 that the average
lag time of this moving average equals (n − 1)/2. Consequently, in the best
trading strategy a turning point in the stock price trend is identified with the
average delay of 5.5months. Therefore if a bear market lasts 5–6 months, then
roughly the best trading strategy generates a wrong Buy signal during the whole
bear market and afterwards generates a wrong Sell signal during the first 5–6
months of the subsequent bull market. Indeed, the duration of a stock price
trend should be long enough to make the trend following strategy profitable.
Since over the total sample period the median duration of a bear market equals
14months, there is a good reason to think (as a ballpark estimate) that even the
best trading strategy in a back test underperforms the buy-and-hold strategy
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during half of all bear markets (that is, during bear markets with duration
shorter than 14months).

Overall, our conclusion is that the short selling strategy is risky and does
not pay off. In addition, there are some other practical complications with
implementationof this strategy. First, this strategy involves significant expenses.
In our empirical study we accounted for the double transaction costs only. In
reality, there are additional short borrowing costs. We assumed that the trader
can always sell short stocks, but in reality regulators may impose bans on short
sales to avoid panic and unwarranted selling pressure.We supposed that stocks
can be sold short as long as the trader wants. In real markets, because short
selling means selling borrowed stocks, the trader can be forced to cover the
short sale if the lender wants the stocks back.Therefore this strategy is not only
highly risky, but very expensive and sometimes impossible to implement.

9.3.3 Does the Choice of Moving Average Influence
the Performance of Trading Strategy?

The three ordinary moving averages are SMA(n), LMA(n), and EMA(n).
In the first part of the book we established that both SMA(n) and EMA(n)

have the same tradeoff between the average lag time and smoothness, whereas
LMA(n) has a slightly better tradeoff between the average lag time and smooth-
ness. In addition, our experiments revealed that, at least in the case where the
trend has no noise, for the same average lag time the EMA(n) has the shortest
delay time in turning point identification, whereas SMA(n) has the longest
delay time in turning point identification.Therefore one naturally expects that
the performance of trading rules with either EMA(n) or LMA(n) should be
superior as compared to that of trading rules with SMA(n). However, our
numerous graphical illustrations provided in the first part of the book demon-
strated that: (1) all ordinary moving averages move close together when they
have the same average lag time; (2) the price-change weighting functions of all
ordinary moving averages differ only a little.

Our goal in this section is to evaluate the comparative performance of trad-
ing rules with different types of ordinary moving averages and, for each specific
rule, find out whether there is a moving average that is clearly superior to the
others. In other words, we want to answer the question of whether the choice
of moving average influences the performance of trading rules. This is done
in the following manner. First, we select a trading rule and, using the total
sample of data, simulate the returns to this rule with three different types
of moving averages. For example, we select the P-MA(n) rule and simulate
the returns to this rule (accounting for 0.25% one-way transaction costs) with
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SMA, LMA, and EMA. For each type of moving average, we vary the value of n
in [2, 25].Thus, for each trading rule and eachmoving average we simulate the
returns to 24 trading strategies. Next, using the Sharpe ratio as performance
measure, we evaluate to which extent each trading strategy (out of totally
24 × 3 = 72 strategies) outperforms the passive strategy. Formally, for each
strategy we compute � = SRMA − SRBH where SRMA and SRBH are the
Sharpe ratios of the moving average strategy and the buy-and-hold strategy
respectively. Finally, we rank each trading strategy according to its outperfor-
mance, from best to worst. Besides the P-MA rule, we use the MAC rule, the
MAE rule, and the MACD rule.
Table 9.7 reports the top 10 best strategies for each trading rule. Rather

surprisingly, contrary to the common belief that LMA and EMA are superior
to SMA, for 3 out of 4 trading rules a trading strategy with SMA provides
either the best performance or one of the best performances. Specifically, for
the P-MA rule the three best performing strategies are based on using SMA.
Similarly, for the MAC rule the two best performing strategies are based on
using SMA. For the MAE rule the strategy with SMA is ranked 3rd, but its
performance is virtually the same as that of the two top strategies that employ
LMA. For the P-MA, MAC, and MAE rules the strategies with EMA are
virtually absent from the top 10 best performing strategies (yet they appear
more frequently in the top 20 best performing strategies). In contrast, for the
MACD rule all top 10 strategies are based on using EMA.

One should keep in mind, however, that the results of our study, as the
results of any empirical study, are dataset-specific and data frequency-specific.
However, when the long-term monthly data on the S&P Composite index
are used, the results seem to be clear-cut. In particular, our results advocate
that the choice of moving average is of little importance. When either the
P-MA,MAC, orMAE rule is used, trading strategies with either SMA or LMA
perform virtually similar. Even though the performance of strategies with EMA
is worse than that with SMA and LMA, the difference in performances is rather
small. For example, the best P-SMA strategy has a Sharpe ratio of 0.54 (0.39
Sharpe ratio of the buy-and-hold strategy plus 0.15 outperformance), whereas
the best P-EMA strategy has a Sharpe ratio of 0.52. Even for the MACD rule
the situation is exactly the same: the best EMACD strategy has a Sharpe ratio
of 0.55, whereas the best SMACD strategy has a Sharpe ratio of 0.52.
The results of this empirical study reveal that the choice of moving average

does not affect the performance of moving average trading strategies as much
as one would expect by examining the price weighting functions of different
moving averages. Many traders believe that LMA and EMA possess better
properties than SMA. In reality, it turns out that “better” is only in the eye of
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Table 9.7 Comparative performance of trading rules with different types of moving
averages

Rank Strategy � Strategy �

P-MA rule MAC rule
1 P-SMA(12) 0.15 SMAC(2,10) 0.16
2 P-SMA(15) 0.14 P-SMA(12) 0.15
3 P-SMA(16) 0.14 LMAC(2,20) 0.14
4 P-LMA(22) 0.13 LMAC(2,21) 0.14
5 P-SMA(17) 0.13 P-SMA(15) 0.14
6 P-LMA(20) 0.13 SMAC(2,12) 0.14
7 P-SMA(14) 0.13 EMAC(4,8) 0.14
8 P-SMA(11) 0.13 P-SMA(16) 0.14
9 P-SMA(10) 0.13 P-LMA(22) 0.13
10 P-SMA(13) 0.13 LMAC(2,18) 0.13

MAE rule MACD rule
1 LMAE(21,0.25) 0.15 EMACD(8,23,10) 0.16
2 LMAE(21,0.5) 0.15 EMACD(10,23,8) 0.16
3 P-SMA(12) 0.15 EMACD(7,22,10) 0.16
4 SMAE(15,0.75) 0.15 EMACD(10,22,7) 0.16
5 SMAE(12,0.25) 0.15 EMACD(8,24,8) 0.16
6 SMAE(16,0.5) 0.15 EMACD(9,23,9) 0.16
7 SMAE(12,1) 0.14 EMACD(6,21,12) 0.15
8 LMAE(14,2.5) 0.14 EMACD(12,21,6) 0.15
9 SMAE(12,1.25) 0.14 EMACD(8,23,8) 0.15
10 LMAE(16,1.5) 0.14 EMACD(9,19,9) 0.15

Notes The performance of all strategies is evaluated over the period from January 1860
to December 2015. � = SRMA − SRBH where SRMA and SRBH are the Sharpe ratios of
the moving average strategy and the buy-and-hold strategy respectively. The Sharpe
ratio of the buy-and-hold strategy amounts to 0.39

the beholder. The better properties of LMA and EMA, as compared to those
of SMA, do not show up in empirical tests. Our main conclusion from this
empirical study is that the choice of moving average is irrelevant. That is, from
a practical point of view, the choice of moving average does not have a crucial
influence on the performance of moving average trading strategies. Taking
into account that the SMA is the simplest, best known, and best understood
moving average, it might be considered superior to othermoving averages from
a practitioner’s point of view. Motivated by this conclusion, in the subsequent
tests we will employ only SMA in the P-MA,MAC, andMAE rules. However,
we will implement theMACD rule with EMA.The reason for the latter choice
is that the MACD rule traditionally uses EMA.
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9.3.4 A Brief Summary of Results

In this sectionwe performed three empirical studies.The results of these studies
allow us to make the following conclusions:

• The short selling strategy is risky and does not pay off. Specifically, the
performance of the short selling strategy is substantially worse than the
performance of the corresponding strategy where the trader switches to
cash (or stays invested in cash) after a Sell signal is generated.

• From a practical point of view, the choice of performance measure does
not influence the performance ranking of trading strategies. Therefore the
Sharpe ratio, which has become the industry standard for measuring risk-
adjusted performance, is superior to other performance measures from a
practitioner’s point of view.

• From a practical point of view, the choice of moving average does not have
a crucial influence on the performance of moving average trading strategies.
In particular, regardless of the choice of moving average, the performance
of the best trading strategy in a back test remains virtually intact. In this
regard, the Simple Moving Average can be preferred as the simplest, best
known and best understood moving average.

9.4 Back-Testing Trading Rules

The results, presented in the previous section, give us some information about
the best performing strategies in a back test over the total historical sample
of data. In particular, among the set of P-SMA, SMAC, and SMAE rules,
the best performing strategies over the total sample are the P-SMA(12) and
SMAC(2,10) strategies. The goal of this section is to perform a deeper analysis
of the best performing moving average strategies in a back test.
The following set of rules are tested:

MOM(n) for n ∈ [2, 25], totally 24 trading strategies;
SMAC(s, l) for s ∈ [1, 12] and l ∈ [2, 25], totally 222 trading strategies;
SMAE(n, p) for n ∈ [2, 25] and p ∈ [0.25, 0.5, . . . , 5.0], totally 480

trading strategies;
EMACD(s, l, n) for s ∈ [1, 12], l ∈ [2, 25], and n ∈ [2, 12], totally 2,442

trading strategies.
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Table 9.8 Top 10 best trading strategies in a back test

Rank Strategy � Strategy � Strategy �

1860–2015 1860–1943 1944–2015
1 EMACD(8,23,10) 0.16 EMACD(9,23,9) 0.20 SMAC(2,10) 0.15
2 EMACD(10,23,8) 0.16 EMACD(8,23,10) 0.19 SMAC(2,12) 0.15
3 EMACD(7,22,10) 0.16 EMACD(10,23,8) 0.19 SMAC(2,11) 0.15
4 EMACD(10,22,7) 0.16 EMACD(8,21,11) 0.19 SMAE(8,1.25) 0.14
5 EMACD(8,24,8) 0.16 EMACD(11,21,8) 0.19 SMAE(8,1.5) 0.13
6 EMACD(9,23,9) 0.16 EMACD(8,24,10) 0.19 SMAE(11,0.75) 0.13
7 SMAC(2,10) 0.16 EMACD(10,24,8) 0.19 EMACD(9,18,10) 0.12
8 EMACD(6,21,12) 0.15 EMACD(10,15,10) 0.19 EMACD(10,18,9) 0.12
9 EMACD(12,21,6) 0.15 EMACD(9,17,12) 0.19 SMAE(11,0.5) 0.12
10 EMACD(8,23,8) 0.15 EMACD(12,17,9) 0.19 P-SMA(12) 0.12

Notes � = SRMA − SRBH where SRMA and SRBH are the Sharpe ratios of the moving
average strategy and the buy-and-hold strategy respectively

The overall number of tested trading strategies amounts to 3,168. The returns
to all strategies are simulated accounting for 0.25% one-way transaction costs.
In all strategies a Sell signal is a signal to leave the stocks and move to cash (or
stay invested in cash). The performance of all strategies is measured using the
Sharpe ratio.
Table 9.8 reports the top 10 best trading strategies in a back test over the total

sample, as well as over the first and the second part of the sample. Apparently,
over the first part of the historical sample, from 1860 to 1943, the trading
strategies based on the EMACD rule show the best performance in a back
test. As a matter of fact, it should be of no surprise that the EMACD rule
is over-represented among the top 10 best performing rules; this rule is very
flexible and easier to fit to data than the other rules because the shape of its
price-change weighting function is determined by 3 parameters (as a result,
the number of tested EMACD strategies is much greater than the number of
all other tested strategies). Over the second part of the sample, from 1944 to
2015, the SMAC(2,10) strategy shows the best performance in a back test.
This rule is also among the top 10 best performing strategies over the total
historical sample from 1860 to 2015.

Figure 9.3 shows the shapes of the price-change weighting functions of the
best trading strategies in a back test. Specifically, it plots the price-change
weighting function of the EMACD(8,23,10) trading strategy which performs
best over the total historical sample, as well as the price-change weighting
function of the SMAC(2,10) trading strategy which is among the top 10
best trading strategies over the total sample. All other trading strategies, that
are among the top 10 trading strategies over the total sample, belong to the
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Fig. 9.3 The shapes of the price-change weighting functions of the best trading strate-
gies in a back test

EMACD rule; the shapes of their price-change weighting functions are similar
to that of the EMACD(8,23,10) trading strategy.
The price-change weighting function of the SMAC(2,10) strategy has

a hump-shaped form, whereas the price-change weighting function of the
EMACD(8,23,10) strategy has a damped waveform. Nevertheless, a visual
observation reveals that the price-change weighting functions of both
EMACD(8,23,10) and SMAC(2,10) strategies look quite similar for the first
9 lags. While the SMAC rule is a genuine trending rule, the EMACD rule
performs best when prices are mean-reverting. Figure 9.2, upper panel, helps
explain why the EMACD rule performed very well over the first part of the
sample. In particular, as shown in the upper panel of this figure, the upswings
and downswings in the S&P Composite index appear to have followed each
other with sufficient regularity over the first part of the sample.Over the second
part of the sample, on the other hand, this regularity disappeared. As a result of
this disappearance, the EMACD rule lost its advantage over the SMAC rule.

Over the total historical sample, the performances of the EMACD(8,23,10)
strategy and the SMAC(2,10) strategy differmarginally. Both trading strategies
outperform the buy-and-hold strategy14; the difference in the Sharpe ratio of
the best moving average trading strategy and the Sharpe ratio of the buy-and-
hold strategy amounts to 0.15–0.16. However, a very prominent feature of

14It is worth repeating, however, that the performance of the best trading rule in a back test overestimates
the real-life performance, because it is upward biased.

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



168 V. Zakamulin

−0.5

0.0

0.5

1.0

Jan 1900 Jan 1950 Jan 2000

O
ut

pe
rfo

rm
an

ce

EMACD(8,23,10)
SMAC(2,10)

Rolling 10 − year outperformance

Fig. 9.4 Rolling 10-year outperformance produced by the best trading strategies in
a back test over the total historical period from January 1860 to December 2015. The
first point in the graph gives the outperformance over the first 10-year period from
January 1860 to December 1869. Outperformance is measured by � = SRMA − SRBH

where SRMA and SRBH are the Sharpe ratios of the moving average strategy and the
buy-and-hold strategy respectively

the outperformance generated by a moving average trading strategy is the fact
that this outperformance is very uneven over time. This distinctive feature
of the outperformance was, for the first time, emphasized in the paper by
Zakamulin (2014). Therefore, as argued in Zakamulin (2014), the traditional
performance measurement, that uses a single number for outperformance,15

is very misleading. This is because a single number for outperformance creates
a wrong impression that outperformance is time-invariant, whereas in reality
it varies dramatically over time.

Figure 9.4 plots the rolling 10-year outperformance produced by the best
trading strategies in a back test over the total historical period from January
1860 to December 2015. Specifically, the first point in the graph gives the
outperformance over the first 10-year period from January 1860 to December
1869; the second point gives the outperformance over the second 10-year
period from February 1860 to January 1870, etc. Apparently, the conclusions

15Furthermore, such a performance is usually measured over a very long-term horizon which is beyond
the investment horizon of most individual investors.
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that can be drawn from this plot are clear-cut: the outperformance varies
dramatically over time; there are long periods where even the best trading
strategies in a back test underperform the buy-and-hold strategy. For example,
the SMAC(2,10) trading strategy, which performed best over the second part
of the sample, underperformed the buy-and-hold strategy over approximately
20-year long period from 1982 to 2001.

It is worth noting that the above results on the best performing trading
strategies answer the following question: which trading strategy delivers the
best performance if the trader sticks to one single trading strategy over the
whole tested period? The other interesting question, which is not answered by
the back tests performed above, is whether the optimal trading strategy is time-
invariant. In other words, it is interesting to find out whether over any given
historical period the same trading strategy delivers the best performance. In
order to find this out, we perform the following “rolling” back test. In particular,
we use a 10-year rolling window and, for each overlapping period of 10 years
(over the total sample from 1860 to 2015), find the best trading strategy in a
back test. After finding the best trading strategies in all 10-year windows,16 we
count the frequency of each trading strategy. That is, we count over how many
rolling windows a specific trading strategy is the best performing strategy.

For the sake of simplicity and clarity, the set of tested trading rules consists
of only the MOM(n) rule, the SMAC(s, l) rule, and the buy-and-hold rule
denoted by B&H(). We add the buy-and-hold strategy because the previous
test reveals that the trend following strategies do not always outperform the
buy-and-hold strategy. We do not employ the EMACD(s, l, n) rule because
this rule is way too flexible and, as a result, the number of possible trading
strategies in this rule exceeds by far the number of possible trading strategies
in all other rules.

Figure 9.5 plots the top 20 most frequent trading strategies in a rolling back
test. Apparently, the SMAC(2,10) strategy is not among the 20 most frequent
trading strategies. The first most frequent trading strategy is the MOM(5)
strategy, the second most frequent trading strategy is the MOM(11) strategy.
Interestingly, the buy-and-hold strategy is the third most frequent trading
strategy in a rolling back test. The two conclusions that can be drawn from
these results are as follows. First, there is no single strategy that delivers the
best performance over any arbitrarily chosen historical period. Second, over
short- to medium-term horizons quite often a moving average trading strategy
cannot beat the buy-and-hold strategy even in a back test.
The strategies that are among the 20most frequent trading strategies are not

completely unrelated to each other. In fact, there are many strategies that differ

16The total number of overlapping 10-year windows amounts to 1752.

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



170 V. Zakamulin

M
O

M
(5

)

M
O

M
(1

1)

B&
H

()

M
O

M
(1

6)

P−
SM

A(
6)

M
O

M
(6

)

SM
AC

(6
,7

)

M
O

M
(1

2)

M
O

M
(8

)

M
O

M
(4

)

SM
AC

(5
,8

)

SM
AC

(6
,1

6)

P−
SM

A(
9)

SM
AC

(2
,8

)

SM
AC

(4
,6

)

M
O

M
(9

)

SM
AC

(5
,6

)

P−
SM

A(
14

)

SM
AC

(6
,1

5)

P−
SM

A(
13

)

20 most frequent trading rules
R

ul
e 

fre
qu

en
ci

es

0

50

100

150

Fig. 9.5 The top 20 most frequent trading rules in a rolling back test. A 10-year rolling
window is used to select the best performing strategies over the full sample period from
1860 to 2015

only a little. Examples are: MOM(11) andMOM(12) strategies, SMAC(6,15)
and SMAC(6,16) strategies, MOM(4) and MOM(5) strategies, etc. In order
to analyze the relationship between the most frequent trading strategies, we
compute the correlation coefficients between the returns to these strategies and,
on the basis of the correlation matrix, we construct a cluster dendrogram.This
dendrogram is depicted in Fig. 9.6. A dendrogram is a visual representation
of the correlation matrix. The individual components, in our context they are
the 20 most frequent trading strategies, are arranged along the bottom of the
dendrogram and referred to as “leaf nodes”. Individual components are joined
into clusters with the join point referred to as a “node”.
The vertical axis in a dendrogram is labelled “distance” and refers to a distance

measure between individual components or “clusters”. The height of the node
can be thought of as the distance value between the right and left sub-branch
clusters. The distance measure between two clusters is calculated as one minus
the correlation coefficient times 100 (that is, D = (1 − C) × 100, where
D and C denote the distance and the correlation coefficient respectively).
The smaller the distance, the higher the correlation coefficient. For example,
the dendrogram reveals that the returns to the P-SMA(13) and P-SMA(14)
strategies are highly correlated. This result comes as no surprise because both
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Fig. 9.6 Cluster dendrogram that shows the relationship between the 20most frequent
trading strategies in a rolling back test

strategies belong to the same P-SMA strategy and the sizes of the averaging
windows in these strategies differ by one monthly observation.

We separate all trading strategies into a few distinct clusters and draw rect-
angles around the branches of a dendrogram highlighting the corresponding
clusters. Whereas the buy-and-hold strategy represents an individual cluster in
this cluster dendrogram, all moving average trading strategies can be divided
between 4 clusters. 3 out of 4 of these clusters are comprised of typical moving
average trading strategies for which the price-change weighting function has
either equally-weighted, decreasing, or hump-shaped form. The main differ-
ence between these clusters is in the size of the averaging window (or average lag
time). Specifically, these clusters are comprised of: (1) strategies with short aver-
aging window (examples are MOM(4), MOM(5), and MOM(6)), (2) strate-
gies with medium averaging window (examples are MOM(8) and MOM(9)),
and (3) strategies with long averaging window (examples are MOM(11) and
MOM(12)). Surprisingly, the 4th cluster is comprised of strategies for which
the price-change weighting function has increasing form.17 That is, this type
of a price-change weighting function assigns larger weights to more distant
price changes (example is the SMAC(6,7) strategy).

17Recall a discussion in Sect. 5.5. Specifically, in the SMAC(s, l) rule, when s is close to l, the hump (or
the top) of the price-change weighting function is located closer to the most distant price change. When
s = l − 1, the shape of the price-change weighting function has a distinct increasing form.
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In principle, the shorter the sample the larger the effect of randomness and,
consequently, the larger the data-mining bias. However, we believe that a big
diversity of the set of the best trading rules in a rolling back test cannot be
attributed to randomness alone. The results of the rolling back test suggest
that there is no single rule that performs best in any given period. The type of
the optimal trading rule is changing over time. Sometimes trading rules with
a short average lag time perform best, other times trading rules with a long
average lag time perform best. Therefore the optimality of the SMAC(2,10)
strategy over the very long historical sample period appears likely due to the
fact that this strategy is “optimal on average” over all possible sub-periods.

9.5 Forward-Testing Trading Rules

9.5.1 Forward or Walk-Forward?

In an out-of-sample testing procedure, in-sample segment of data can be either
rolling or expanding. The use of a rolling in-sample window in out-of-sample
tests (this technique is calledwalk-forward testing) is justifiedwhen themarket’s
dynamics is changing over time. The results reported in the previous section
advocate that, over short- to medium-term horizons, the best trading rule in
a back test is changing over time. Therefore, implementing forward tests of
moving average trading rules with a rolling in-sample window can potentially
produce better out-of-sample performance of trading rules. The goal of this
section is to test whether the out-of-sample performance of moving average
trading rules depends on forward-testing technique (use of either expanding
or rolling in-sample window).
The set of tested trading rules is the same as that described in Sect. 9.4. The

overall number of tested trading strategies amounts to 3,168. Recall that in
a forward test a trading signal at month-end equals the trading signal of the
strategy (1 out of overall 3,168 available strategies) with the best performance
in the in-sample window of data.18 The returns to all strategies are simulated

18We denote this strategy as “combined” (COMBI) strategy and believe that this strategy mimics most
closely the actual trader behavior. Specifically, the trader, that follows this strategy, using the in-sample
window of data evaluates the performances of 24 MOM(n) strategies, 222 SMAC(s, l) strategies,
480 SMAE(n, p) strategies, and 2,442 EMAC(s, l, n) strategies; totally 3,168 strategies. The strategy
with the best in-sample performance is used to generate the trading signal for the next period. In this
combined strategy the trading rule may alter every each period. For example, one period the trader may
use theMOMrule, next period the SMAE rule, and after that the SMAC rule. It is worth noting that, to the
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accounting for 0.25% one-way transaction costs. In all strategies a Sell signal
is a signal to leave the stocks and move to cash (or stay invested in cash).
The performance of all strategies is measured using the Sharpe ratio. The out-
of-sample returns are simulated from January 1870 to December 2015. The
initial in-sample segment covers the period from January 1860 to December
1869.19

Table 9.9 reports the descriptive statistics of the buy-and-hold strategy over
the out-of-sample period, as well as the descriptive statistics and performances
of the moving average trading strategies simulated out-of-sample using both a
rolling and an expanding in-sample window. The descriptive statistics include
the (annualized) mean returns, the minimum and maximum monthly return.
The following risk measures are reported: the (annualized) standard devia-
tion of returns, the maximum drawdown,20 the average maximum drawdown
which is an equally-weighted average of the 10 largest drawdowns, and the aver-
age drawdown. The shape of the return distribution is characterized by skew-
ness and kurtosis.21 The outperformance is measured by� = SRMA−SRBH
where SRMA and SRBH are the Sharpe ratios of the moving average strat-
egy and the buy-and-hold strategy respectively. P-value is the value of testing
the following null hypothesis H0 : � ≤ 0. This hypothesis is tested using
the stationary block-bootstrap method consisting in drawing 10,000 random
resamples with the average block length of 5months.

Figure 9.7 shows the rolling 10-year out-of-sample outperformance pro-
duced by the trading strategies simulated using both a rolling and an expand-
ing in-sample window. Apparently, this figure clearly demonstrates that the

(Footnote 18 continued)
best knowledge of the author, in all previous studies the researchers tested the performance of a single rule
at a time. For instance, one tested separately the performance of the MOM and SMAC rules. Such test
method implicitly assumes that the trader always uses a single arbitrary rule; and there is absolutely no
justification for why the trader has to follow a single rule.
19To check the robustness of findings reported in this section, we varied the length of the initial in-sample
segment from 5 to 20 years. Qualitatively, the conclusion reached in this section remains intact regardless
of the length of the initial in-sample segment.
20Drawdown is a measure of the decline from a historical peak to the subsequent trough. The amplitude

of a drawdown is measured as A = Ppeak−Ptrough
Ppeak

, where Ppeak is the stock price at a historical peak and

Ptrough is the stock price at the subsequent trough. The maximum drawdown is the maximum of all
drawdowns over some given historical period. To compute all drawdown measures, using the time-series
of total returns to a strategy we construct the series of prices. As a result, we compute the drawdowns using
the prices adjusted for dividends.
21Skewness is a measure of the asymmetry of the probability distribution. Skewness can be both positive
and negative. Negative (positive) skew indicates that the tail on the left (right) side of the probability
distribution function is longer or fatter than that on the right (left) side. The skewness of the normal
distribution equals to 0. Kurtosis is a measure of whether the probability distribution is heavy-tailed or
light-tailed relative to the normal distribution.The kurtosis of the normal distribution equals to 3. Kurtosis
above (below) 3 indicates that the probability distribution is heavy (light) tailed relative to the normal
distribution.
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Table 9.9 Descriptive statistics of the buy-and-hold strategy and the out-of-sample
performance of the moving average trading strategy

BH ROL EXP

Mean returns % 10.15 8.14 9.23
Std. deviation % 17.28 11.95 11.64
Minimum return % −29.43 −23.51 −23.51
Maximum return % 42.91 42.66 42.91
Skewness 0.28 0.53 0.74
Kurtosis 8.86 17.34 19.72
Average drawdown % 7.25 5.89 5.32
Average max drawdown % 41.25 26.67 24.03
Maximum drawdown % 83.14 62.96 45.82
Outperformance 0.00 0.10
P-value 0.52 0.08
Rolling 5-year Win % 37.45 56.59
Rolling 10-year Win % 45.44 65.58

Notes BH denotes the buy-and-hold strategy. ROL denotes the moving average trading
strategy simulated using a rolling in-sample window. EXP denotes the moving average
trading strategy simulated using an expanding in-sample window. Mean returns and
standard deviations are annualized. Bold text indicates the outperformance which is
statistically significant at the 10% level

outperformance is not only very uneven over time, but often a moving average
trading strategy underperforms its passive counterpart. Therefore the reported
outperformance is a measure of average outperformance computed using a
very long horizon (which is beyond the investment horizon of any individ-
ual investor). Since the majority of investors have short- to medium term
horizons, the average outperformance produced by a moving average trading
strategy over a horizon of 155 years is not especially relevant. In order to provide
a more accurate picture of outperformance, using rolling windows of 5 and
10 years we compute the probability that the moving average trading strategy
outperforms its passive counterpart over an arbitrary historical period of 5 and
10 years. These probabilities are denoted as “Rolling 5(10)-year Win %”.
The conclusion that can be reached from the results reported in Table 9.9,

coupled with the graphical illustration of rolling 10-year outperformance in
Fig. 9.7, is pretty straightforward: the out-of-sample performance of the mov-
ing average trading strategy simulated using an expanding in-sample window
is substantially better than that of its counterpart simulated with a rolling in-
sample window.22 Whereas the moving average strategy simulated using an

22To check the robustness of this finding, we also analyzed the out-of-sample performance of single trading
rules. We found that only the MOM(n) rule showed better out-of-sample performance when the returns
to this rule were simulated using a rolling in-sample window. However, the evidence of superior out-of-
sample performance of this rule, simulated with a rolling in-sample window, appeared mainly during the
first part of the historical sample.
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Fig. 9.7 Rolling 10-year out-of-sample outperformance produced by the trading strate-
gies simulated using both a rolling and an expanding in-sample window. The out-of-
sample segment cover the period from January 1870 to December 2015. The first point
in the graph gives the outperformance over the first 10-year period from January 1870
to December 1879. Outperformance is measured by � = SRMA − SRBH where SRMA

and SRBH are the Sharpe ratios of the moving average strategy and the buy-and-hold
strategy respectively

expanding in-sample window both economically and statistically significantly
(at the 8% level) outperforms the buy-and-hold strategy, the moving aver-
age strategy simulated using a rolling in-sample window has the same (risk-
adjusted) performance as the buy-and-hold strategy. As compared with the
strategy simulated using a rolling in-sample window, the strategy simulated
using an expanding in-sample window has higher mean returns, lower risk-
iness, and higher probability of beating the passive strategy over short- to
medium-term horizons.

Why the out-of-sample performance of a moving average trading strategy
simulated using an expanding in-sample window is better than that of its
counterpart simulated using a rolling window?This result seems to be counter-
intuitive taking into account the evidence that the best trading strategy in a
back test varies over time. We propose several explanations for this result.
First, when the sample size is relatively short, the data mining bias is large
and, consequently, the performance of the best trading strategy in a back test
has a large random component. Second, even if the variations in the type
of the best trading strategy in a back test are not due to randomness alone,
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the market’s dynamics may change way too fast. As a result of fast changing
market’s dynamics, trading rules that were optimal in the near past may no
longer be optimal in the near future. Third, the advantage of the moving
average trading strategy appears mainly during the periods of severe market
downturns (for the motivation, see Fig. 9.7). During such periods, the optimal
trading strategy may be more or less the same. That is, the trading strategy
that was optimal during the decade of 1930s may again be optimal (or close
to optimal) during the decades of 1970s and 2000s. We conjecture that the
moving average strategies with a window size of 10–12 months (examples are
the SMAC(2,10) and P-SMA(12) strategies) are the strategies that work best
during the severe market downturns.

9.5.2 Ambiguity in Performance Measurement

Because both in-sample and out-of-sample performance of a moving average
trading strategy is very uneven over time, the results of both in-sample and out-
of-sample tests of profitability of moving average trading rules depend on the
choice of the historical period where the trading rules are tested. In addition,
the out-of-sample performance of trading rules depends, sometimes crucially,
on the choice of split point between the initial in-sample and out-of-sample
subsets. The goal of this section is to illustrate these issues.
To illustrate the dependence of the out-of-sample outperformance of the

moving average trading strategy on the choice of split point, we select the
historical period from January 1900 to December 2015 and simulate the out-
of-sample returns to the moving average trading strategy using an expanding
in-sample window. We vary the split point between the initial in-sample and
out-of-sample segments from January 1910 to January 2011. Figure 9.8, upper
panel, plots the out-of-sample outperformance of the moving average trading
strategy for different choices of the sample split point. The lower panel of this
figure plots the p-value of the test for outperformance.

Apparently, both the outperformance and the p-value of the test for out-
performance depend significantly on the choice of split point. In particular,
for the majority of choices, despite the fact that the p-value of the outperfor-
mance test is above 10%, the outperformance is positive. Further note that
the trading strategy’s outperformance increases dramatically if the split point
is displaced towards the end of the sample. In particular, if the sample split
point is located in between 1995 and 2005, the outperformance is more than
double as high as that with the other choices for the sample split point. When
the split point is located either from 1921 to 1930, or during the decade of
1990s, the p-value of the test is either below the 10% level or just a bit above
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Fig. 9.8 Upper panel plots the out-of-sample outperformance of the moving average
trading strategy for different choices of the sample split point. The outperformance is
measured over the period that starts from the observation next to the split point and
lasts to the end of the sample in December 2015. The lower panel of this figure plots
the p-value of the test for outperformance. In particular, the following null hypothesis
is tested: H0 : SRMA − SRBH ≤ 0 where SRMA and SRBH are the Sharpe ratios of
the moving average strategy and the buy-and-hold strategy respectively. The dashed
horizontal line in the lower panel depicts the location of the 10% significance level

this level. The outperformance is statistically significant at the 5% level when
the split point is located from 1998 to 2001. Therefore, it is possible to choose
the location of the split point such that the result of the out-of-sample test
of profitability favors the moving average strategy and leads to the conclusion
that the outperformance of the moving average trading strategy is positive and
statistically significantly above zero at the conventional statistical levels (5% or
10%). Note, however, that for some “unfortunate” choices for the split point
location, the out-of-sample outperformance is either close to zero or negative.
Specifically, this is the case when split points are located either from 1930 to
1940 or from 1975 to 1980. If the split point belongs to either of the two
specific periods, then one arrives at the opposite conclusion: the performance
of the market timing strategy is either equal to or worse than that of the
buy-and-hold strategy.
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Fig. 9.9 Upper panel plots the out-of-sample outperformance of the moving aver-
age trading strategy for different choices of the sample start point. Regardless of the
sample start point, the out-of-sample segment covers the period from January 2000 to
December 2015. The lower panel of this figure plots thep-value of the test for outperfor-
mance. In particular, the followingnull hypothesis is tested: H0 : SRMA−SRBH ≤ 0where
SRMA and SRBH are the Sharpe ratios of the moving average strategy and the buy-and-
hold strategy respectively. The dashed horizontal line in the lower panel depicts the
location of the 10% significance level

To illustrate the dependence of the out-of-sample outperformance of the
moving average trading strategy on the choice of the historical period, we
simulate the out-of-sample returns to the moving average trading strategy over
the period from January 2000 to December 2015. We vary the start of the
historical period from 1860 to 1990 with a step of 10 years. In other words,
the start of the in-sample segment of data takes values in 1860, 1870, and so on
up to 1990. Figure 9.9, upper panel, plots the out-of-sample outperformance
of the moving average trading strategy for different choices of the sample
start point. The lower panel of this figure plots the p-value of the test for
outperformance.

Again, the graphs in this figure clearly illustrate that the out-of-sample
outperformance of the moving average trading strategy depends very much on
the sample start point. Despite the fact that the out-of-sample period from
2000 to 2015 was very successful for the market timing strategies (because
this particular period contains two severe stock market crashes: the Dot-Com
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bubble crash of 2001–02 and the Global Financial Crisis of 2007–08) and
the outperformance delivered by the moving average trading strategy is always
positive regardless of the sample start point, the p-value of the outperformance
test depends significantly on the choice of the sample start point. The best
outperformance and the lowest p-value of the outperformance tests are attained
when the sample start point is chosen as January 1940. If the sample starts
either in 1870, 1880, 1980, or 1990, the p-value of the outperformance tests
is way above the 10% level.
The illustrations provided in this section suggest that it is very difficult

to provide an objective assessment of the historical outperformance delivered
by the moving average trading strategy. This is because the outperformance
depends on many different choices: the set of trading rules, the type of for-
ward test (specifically, the choice of either expanding or rolling in-sample win-
dow), the choice of historical sample period, and the choice of the split point
between the initial in-sample and out-of-sample segments.Therefore one needs
to keep in mind this ambiguity in out-of-sample performance measurement.
In the subsequent analysis, our choices for historical periods and split points
are made in order to provide the most typical picture of the out-of-sample
outperformance that is delivered by the moving average trading strategy.

9.5.3 Main Results of Forward Tests

In this section we report the detailed results of forward (that is, out-of-sample)
tests of the moving average trading strategies. We forward-test some single
trading rules and the combined rule where at each month-end we select the
rule with the best performance in the in-sample segment of data.The following
single rules are tested:

MOM(n) for n ∈ [2, 25], totally 24 trading strategies;
P-SMA(n) for n ∈ [2, 25], totally 24 trading strategies;
SMAC(s, l) for s ∈ [1, 12] and l ∈ [2, 25], totally 222 trading strategies;
SMAE(n, p) for n ∈ [2, 25] and p ∈ [0.25, 0.5, . . . , 5.0], totally 480

trading strategies;
EMACD(s, l, n) for s ∈ [1, 12], l ∈ [2, 25], and n ∈ [2, 12], totally 2,442

trading strategies.

The motivation for forward-testing the P-SMA rule is that in this rule, as well
as in theMOMrule, there is only one single parameter: the size of the averaging
window. Generally, the less the number of parameters in a trading rule, the
less the number of tested strategies and, consequently, the less the data mining
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bias in the performance of the best trading strategy in a back test. Therefore
the out-of-sample performance of the P-SMA rule might be potentially better
than the performance of the SMAC rule which generalizes the P-SMA rule.

In the combined strategy, the performance of each single strategy in all tested
rules is evaluated in the in-sample segment of data, and the trading signal at
month-end equals the trading signal of the strategy with the best performance
in the in-sample segment of data. In the combined strategy, the overall number
of tested single trading strategies amounts to 3,192.The returns to all strategies
are simulated accounting for 0.25% one-way transaction costs. In all strategies
a Sell signal is a signal to leave the stocks and move to cash (or stay invested
in cash). The performance of all strategies is measured using the Sharpe ratio.
The forward test is implemented with an expanding in-sample window. The
null hypothesis of no outperformance is tested using the stationary block-
bootstrap method consisting in drawing 10,000 random resamples with the
average block length of 5months.
Table 9.10 reports the descriptive statistics of the buy-and-hold strategy and

the out-of-sample performance of the moving average trading strategies. The
performance is reported for the full out-of-sample period from January 1870
to December 2015 (with the initial in-sample segment from January 1860 to
December 1869), for the first part of the out-of-sample period from January
1870 to December 1943 (with the initial in-sample segment from January
1860 to December 1869), and for the second part of the out-of-sample period
from January 1944 toDecember 2015 (with the initial in-sample segment from
January 1929 to December 1943). It is important to note that the two sub-
periods have exactly the same number of bull-bear market phases. In particular,
each of the two sub-periods has 21 bull and 20 bear markets.

Judging by (the sign of ) the estimated outperformance, every single moving
average strategy and the combined strategy outperforms the buy-and-hold
strategy on the risk-adjusted basis. This observation applies equally to the
outperformances over the whole period and the two sub-periods. Over the
whole period, 3 out of 5 single strategies and the combined strategy statistically
significantly outperform (at the 10% level) the buy-and-hold strategy. The
performance of the P-SMA rule is statistically significantly better than that of
the buy-and-hold strategy at the 5% level.

Over the first sub-period, only the performance of the MACD rule is statis-
tically significantly better than that of the buy-and strategy. Even though the
outperformance delivered by the MOM, P-SMA, and the combined rule is
only marginally below the outperformance of the MACD rule, for these rules
we cannot reject (at conventional statistical levels) the hypotheses that their
performance is not better than the performance of the buy-and-hold strategy.
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Table 9.10 Descriptive statistics of the buy-and-hold strategy and the out-of-sample
performance of the moving average trading strategies

Moving average strategy
Statistics BH MOM P-SMA SMAC SMAE MACD COMBI

Total period from 1870 to 2015
Mean returns % 10.15 9.29 9.42 8.86 8.69 9.33 9.23
Std. deviation % 17.28 11.72 11.41 11.40 11.36 11.53 11.64
Minimum return % −29.43 −23.51 −23.51 −23.51 −23.51 −23.51 −23.51
Maximum return % 42.91 42.66 16.09 16.09 16.09 42.91 42.91
Skewness 0.28 0.68 −0.49 −0.49 −0.42 0.76 0.74
Kurtosis 8.86 18.21 6.15 6.28 5.76 20.53 19.72
Average drawdown % 7.25 5.26 4.99 5.25 5.26 5.18 5.32
Average max drawdown % 41.25 22.21 23.30 23.02 24.63 23.71 24.03
Maximum drawdown % 83.14 47.01 51.65 44.50 53.46 44.01 45.82
Outperformance 0.10 0.13 0.08 0.07 0.11 0.10
P-value 0.06 0.04 0.14 0.19 0.06 0.08
Rolling 5-year Win % 48.91 50.50 38.69 45.42 56.88 56.59
Rolling 10-year Win % 52.05 61.24 50.52 47.40 66.26 65.58
First period from 1870 to 1943
Mean returns % 8.66 8.02 7.83 7.05 6.76 8.71 8.52
Std. deviation % 19.68 12.48 11.80 11.78 11.60 13.03 13.03
Minimum return % −29.43 −23.51 −23.51 −23.51 −23.51 −23.51 −23.51
Maximum return % 42.91 42.66 16.09 16.09 16.09 42.91 42.91
Skewness 0.56 1.44 −0.53 −0.49 −0.43 1.29 1.29
Kurtosis 9.67 25.44 7.40 7.58 7.08 22.55 22.53
Average drawdown % 9.16 6.47 6.00 6.53 6.73 6.49 6.77
Average max drawdown % 32.20 19.03 18.52 18.65 20.76 20.14 20.46
Maximum drawdown % 83.14 47.01 51.65 44.50 53.46 44.01 45.82
Outperformance 0.10 0.11 0.04 0.02 0.14 0.13
P-value 0.15 0.17 0.34 0.44 0.07 0.11
Rolling 5-year Win % 47.65 57.54 38.72 51.39 63.21 62.73
Rolling 10-year Win % 51.50 76.33 52.67 47.98 79.32 78.93
Second period from 1944 to 2015
Mean returns % 11.69 10.15 10.52 10.37 10.69 9.54 10.41
Std. deviation % 14.40 11.03 10.86 11.04 11.04 9.63 10.94
Minimum return % −21.54 −21.54 −21.54 −21.54 −21.54 −21.54 −21.54
Maximum return % 16.78 13.21 12.17 13.46 13.46 12.17 13.46
Skewness −0.41 −0.47 −0.51 −0.47 −0.41 −0.54 −0.40
Kurtosis 1.60 4.46 4.52 4.42 4.20 7.25 4.35
Average drawdown % 5.99 4.79 4.47 4.55 4.37 4.32 4.60
Average max drawdown % 28.91 16.03 15.09 15.81 14.65 14.05 14.88
Maximum drawdown % 50.96 23.26 23.26 24.28 23.26 23.26 23.26
Outperformance 0.02 0.06 0.04 0.07 0.04 0.05
P-value 0.42 0.26 0.35 0.23 0.38 0.30
Rolling 5-year Win % 35.65 48.20 41.99 39.13 45.96 39.38
Rolling 10-year Win % 44.16 51.01 50.20 51.81 57.72 49.13

Notes BH denotes the buy-and-hold strategy, whereas COMBI denotes the ‘‘com-
bined’’ moving average trading strategy where at each month-end the best trading
strategy in a back test is selected. The notations for the other trading strategies are
self-explanatory. Outperformance ismeasured by� = SRMA−SRBH where SRMA and
SRBH are the Sharpe ratios of the moving average strategy and the buy-and-hold
strategy respectively. Bold text indicates the outperformance which is statistically
significant at the 10% level

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



182 V. Zakamulin

However, this result can be explained by the fact that the statistical power of
any test reduces with decreasing sample size.

Despite the fact that the two sub-periods have the same number of bull
and bear markets, in the second sub-period the stock market has been much
more often in the bull state. Therefore, as could be expected beforehand, over
the second sub-period the moving average trading strategies outperformed the
passive strategy to a much lesser extent. Specifically, whereas over the first
sub-period the average outperformance (measured by � = SRMA − SRBH )
amounts to 0.090, over the second sub-period the average outperformance
is reduced by half and amounts to 0.047. Similarly, while over the first sub-
period the probability, that a moving average trading strategy outperforms its
passive counterpart over a 10-year horizon, varies from 51% to 79%, over the
second sub-period this probability is reduced and varies from 44% to 57%.
Consequently, the advantage of the moving average trading strategy over the
buy-and-hold strategy has diminished through time.
The comparison of the descriptive statistics of the returns to the moving

average trading strategies versus the descriptive statistics of the returns to the
buy-and-hold strategy reveals the following. Judging by the values of the stan-
dard deviation of returns (a.k.a. volatility), all moving average trading strategies
are virtually equally risky.We observe a significant reduction in return volatility
as compared to the volatility of the passive strategy. However, the reduction
of volatility is not surprising because virtually in any moving average strategy
about 1/3 of the time the money are held in cash. The mean returns to the
moving average strategies are also below the mean returns to the passive strat-
egy; the only exception is the mean return to the MACD rule over the first
sub-period. Thus, the moving average trading strategy has both lower returns
and risk as compared to those of its passive counterpart. Consequently, over the
long run the cumulative return to the buy-and-hold strategy tends to increase
faster than the cumulative return to the moving average strategy. Figure 9.10,
upper panel, demonstrates this feature by plotting the cumulative returns to
the buy-and-hold strategy and the out-of-sample cumulative returns to the
P-SMA rule.
The advantages of themoving average trading strategy aremore pronounced

when one compares the drawdown-based measures of risk of the moving aver-
age strategy and the corresponding buy-and-hold strategy. Over the total sam-
ple period, whereas the reduction of volatility amounts to approximately 1/3,
the reduction of the maximum drawdown and the average maximum draw-
down amounts to approximately 1/2.Thus, and it is very important to empha-
size, the moving average trading strategy is not a “high returns, low risk” strat-
egy as compared to the buy-and-hold strategy. In reality, it is a “low returns,
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Fig. 9.10 Upper panel plots the cumulative returns to the P-SMA strategy versus the
cumulative returns to the buy-and-hold strategy (B&H) over the out-of-sample period
from January 1944 to December 2015. Lower panel plots the drawdowns to the P-SMA
strategy versus the drawdowns to the buy-and-hold strategy over the out-of-sample
period

low risk” strategy. However, for all trading rules the decrease in mean (excess)
return is smaller than the decrease in volatility. This property improves the
risk-adjusted performance of a moving average strategy as compared with that
of the passive strategy. Most importantly, for all trading rules the decrease in
mean (excess) return is much smaller than the decrease in drawdown-based
measures of risk. Therefore the main advantage of the moving average trad-
ing strategy lies in its superior downside protection. Figure 9.10, lower panel,
demonstrates this advantage by plotting the drawdowns to the buy-and-hold
strategy and the P-SMA rule. We will elaborate more on this property of the
moving average trading strategy at the end of this chapter.

9.5.4 Performance over Bull and Bear Markets

To gain further insights into the properties of the moving average trading
strategy, we analyze the out-of-sample performance of the combined moving
average trading strategy and the performance of the corresponding buy-and-
hold strategy over bull and bear markets. We focus on the second part of the
out-of-sample period, from January 1944 to December 2015, because, in our
opinion, the performance over this particular historical period can be used
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as a reliable estimate of the expected future performance. Table 9.11 reports
the descriptive statistics of the buy-and-hold strategy and the moving average
trading strategy over bull and bear markets. The descriptive statistics include
the mean and standard deviation of returns (in annualized terms), as well as the
Sharpe ratios over the bull markets. The Sharpe ratios over the bear markets
are not reported, because when the mean excess return is negative, the value of
the Sharpe ratio is not reliable and hard to interpret. Figure 9.11 visualizes the
mean returns and standard deviations of the moving average trading strategy
and the corresponding buy-and-hold strategy over bull and bear markets.
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Fig. 9.11 Mean returns and standard deviations of the buy-and-hold strategy and the
moving average trading strategy over bull and bear markets. BH and MA denote the
buy-and-hold strategy and the moving average trading strategy respectively

Table 9.11 Descriptive statistics of the buy-and-hold strategy and the moving average
trading strategy over bull and bear markets

Bull markets Bear markets
Statistics BH MA BH MA

Mean returns % 24.35 17.35 −21.61 −7.79
Std. deviation % 12.60 10.95 14.42 8.80
Sharpe ratio 1.63 1.24

Notes BH and MA denote the buy-and-hold strategy and the moving average trading
strategy respectively. Mean returns and standard deviations are annualized. Descriptive
statistics are reported for the out-of-sample period from January 1944 to December
2015
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Apparently, over bull markets the buy-and-hold strategy outperforms the
moving average trading strategy. Specifically, over bull markets the buy-and-
hold strategy delivers both higher mean returns and higher Sharpe ratio than
the moving average trading strategy. It is interesting to observe that the moving
average trading strategy has lower standard deviation of returns (as compared
to that of the buy-and-hold strategy) over both bull and bear markets. Specifi-
cally, as compared with the standard deviation of returns to the buy-and-hold
strategy, the standard deviation of returns to the moving average trading strat-
egy is less by 13% (39%) over the bull (bear) markets.That is, over bull markets
the buy-and-hold strategy has higher returns and higher risk than the moving
average strategy, but this strategy has better risk-adjusted performance than
the moving average strategy. On the other hand, over bear markets the moving
average trading strategy has better tradeoff between the risk and return than
that of the buy-and-hold strategy. In particular, over bear markets the moving
average strategy is “high returns, low risk” strategy. It is worth noting, how-
ever, that in bear markets the mean returns to the moving average strategy
are negative (nevertheless they are much higher than the mean returns to the
buy-and-hold strategy in bear markets). That is, on average, technical traders
who employ the moving average strategy also lose money in bear markets; yet
their losses are less than those of the investors that follow the buy-and-hold
strategy.
To help explain the results presented inTable 9.11, we analyze the similarity,

or concordance, between the Bull-Bear states of the market and the Buy-
Sell periods produced by the trading signals generated by the (out-of-sample)
moving average trading strategy. Figure 9.12 visualizes the Bull-Bear states of
the market and the Buy-Sell periods. Obviously, the similarity is far from
perfect. There are many Sell signals during Bull market states, as well as there
are many Buy signals during Bear market states. The reader is reminded that
one of the essential properties of moving averages is that they detect a change
in the stock market trend with some delay. By examining the plot in Fig. 9.12,
one can easily note that, roughly, the Buy-Sell periods represent delayed copies
of the Bull-Bear market states.

Our analysis reveals that the number of distinctive Buy-Sell periods is
approximately double as high as the number of corresponding Bull-Bear stock
market states. For example, over the tested period from 1944 to 2015, there

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



186 V. Zakamulin

3

4

5

6

7

1960 1980 2000

Be
ar

 m
ar

ke
ts

Se
ll 

si
gn

al
s

Bull and Bear markets versus Buy and Sell signals

Fig. 9.12 Bull and Bear markets versus Buy and Sell signals generated by the moving
average trading strategy. Shaded ares in the upper part of the plot indicate Sell periods.
Shaded areas in the lower part of the plot indicate Bear market states

were 21 Bull markets and 37 Buy periods. To quantify the similarity between
the Bull-Bear states of the market and the Buy-Sell periods, we employ the
Simple Matching Coefficient (SMC). Denoting by Signalt the trading signal
for month t and by Statet the state of the market in month t , the computation
of the SMC starts with calculating the following quantities:

M00 = the number of instances where Signalt = Sell and Statet = Bear,

M01 = the number of instances where Signalt = Sell and Statet = Bull,

M10 = the number of instances where Signalt = Buy and Statet = Bear,

M11 = the number of instances where Signalt = Buy and Statet = Bull.

Notice that M00 and M11 can be interpreted as the number of months with
correct Sell and Buy signals respectively. In contrast, M01 and M10 can be
interpreted as the number ofmonthswith false Sell andBuy signals respectively.
For any month t ∈ [1, T ], each instance must fall into one of these four
categories, meaning that

M00 + M01 + M10 + M11 = T .

The Simple Matching Coefficient is computed as the number of months with
correct Buy and Sell trading signals divided by the total number of months
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SMC = M00 + M11

M00 + M01 + M10 + M11
.

The value of the SMC is constrained to lie within the range [0, 1], where
the case SMC = 1 (or 100%) indicates a perfect match between the Bull-
Bear market states and the Buy-Sell periods. Therefore the closer the similarity
coefficient to unity, the better the moving average trading strategy identifies
the stock market states. The computed value of the SMC of the moving aver-
age strategy equals 0.764. This value means that, over the tested period, the
accuracy of this strategy was 76.4%. In other words, the moving average rules
produced correct trading signals approximately 3/4 of time. Since the value
of the SMC is substantially below 100%, we can conclude that the moving
average trading strategy generates many false signals. The buy-and-hold strat-
egy can be considered as a strategy which correctly (incorrectly) identifies all
bull (bear) markets. The accuracy of the buy-and-hold strategy, as measured
by the SMC, amounts to 72.5%.23 Therefore, the moving average strategy is,
in principle, just a bit more accurate than the buy-and-hold strategy in iden-
tification of the stock market states. Nevertheless, this very marginal increase
in accuracy translates into a substantial downside protection.
To estimate the average lag time between the Buy-Sell periods and the Bull-

Bear states, we back-shift the time series of the Buy-Sell periods, and for each
lagged time-series of Buy-Sell periods, we compute the SMC. The average lag
time is found as the number of back-shifts at which the SMCattainsmaximum.
Formally, the average lag time is estimated as

Average lag time = argmax
k≥1

SMC(Statet , L
k Signalt),

where Lk is the lag (or back-shift) operator defined by

Lk Signalt = Signalt−k .

The computation of the average lag time in the identification of the stock
market states gives 4months. That is, on average, the moving average trading
strategy recognizes the change in the stock price trend with a lag time of
4months (in out-of-sample tests).This result suggests that, in order themoving
average trading strategy to work, the duration of the stock market state should
be substantially longer than 4months. Since over the second part of the sample
the median duration of a Bear market was 12months, we can roughly estimate
that the moving average trading strategy works every second bear market on

23This number also tells us that over the second period the market was in Bull state 72.5% of time.
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average. That is, roughly, the moving average trading strategy works (does not
work) when the duration of a bear market is longer (shorter) than 12months.

It is worthmentioning that the actual lag time in identification of a particular
state of themarket candeviate substantially from the average lag time.Consider,
as an illustrative example, a concrete bear market that lasted only 3months:
from September 1987 to November 1987. This period includes the famous
stock market crash that happened on October 19, 1987. Because the drop in
the stock market prices during October 1987 was sharp and significant, the
moving average trading strategy generated a Sell signal already for November
1987. That is, in this example, the lag time in the identification of the Bear
market was only 2months. Again, because during this Bear market the stock
prices decreased swiftly and substantially, the value of the moving average was
higher than the stock prices during a long period after the beginning of the
subsequent Bull market. The moving average trading strategy recognized this
Bull market with a delay of 11months.

9.6 Daily Trading the S&P Composite Index

The goal of this section is to find out whether there is any advantage in trading
using the daily data versus the monthly data. In principle, the daily data are
freely available and it seems natural to expect that using the daily data may
potentially improve the performance of the moving average strategy. This is
because the high-frequency data are supposed to provide earlier Buy and Sell
trading signals. To the best knowledge of the author, so far there is only a single
paper by Clare et al. (2013) where the authors use daily and monthly data on
the S&P 500 index (over the period from 1988 to 2011) and investigate this
question using the back-testing methodology. Rather surprisingly, Clare et al.
(2013) found that there is no advantage in trading daily rather than monthly.
We re-examine this question using a longer sample of data, a larger set of
trading rules, and both the back-testing and forward-testing methodology.

9.6.1 Data

Daily prices on the S&P Composite stock market index are obtained from the
Center for Research in Security Prices (CRSP).24 The data span the period
from July 2, 1926 to December 31, 2015. Dividends are 12-month moving
sums of dividends paid on the Standard and Poor’s Composite index. The

24http://www.crsp.com/.
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monthly dividend series data are provided by Amit Goyal.25 The monthly
risk-free rate of return data for the sample period are obtained from the data
library of Kenneth French.26 This rate equals to 1-month Treasury Bill rate
from Ibbotson and Associates Inc.

Until the end of 1952, stock exchanges in the US were open 6 days a week.
Beginning from 1953, stocks were traded 5 days a week only.Therefore, for the
sake of consistency of daily data series,we remove the index values for Saturdays.
Daily index values are used to compute the daily capital gain returns. The daily
dividend yield is the simple daily yield that, over the number of trading days
in the month, compounds to 1-month dividend yield. The total returns are
obtained by summing up the capital gain returns and the dividend yields. The
daily risk-free rate is the simple daily rate that, over the number of trading days
in a given month, compounds to 1-month Treasury Bill rate from Ibbotson
and Associates Inc.

9.6.2 Back-Testing Trading Rules

The following set of rules are tested:

MOM(n) forn ∈ [2, 3, . . . , 15, 20, 30, . . . , 350], totally 48 trading strate-
gies;

SMAC(s, l) for s ∈ [1, 2, . . . , 20, 25, . . . , 80] and l ∈ [2, 3, . . . , 15, 20,
30, . . . , 350], totally 1,144 trading strategies;

SMAE(n, p) for n ∈ [2, 3, . . . , 15, 20, 30, . . . , 350] and p ∈ [0.25,
0.5, . . . , 5.0], totally 960 trading strategies;

EMACD(s, l, n) for s ∈ [1, 2, . . . , 20, 25, . . . , 80], l ∈ [2, 3, . . . , 15, 20,
30, . . . , 350], and n ∈ [5, 10, . . . , 20, 40, . . . , 100], totally 9,152 trading
strategies.

The overall number of tested trading strategies amounts to 11,304.The returns
to all strategies are simulated accounting for 0.25% one-way transaction costs.
In all strategies a Sell signal is a signal to leave the stocks and move to cash (or
stay invested in cash). The performance of all strategies is measured using the
Sharpe ratio.
Table 9.12 reports the top 10 best trading strategies in a back test over the

period from January 1944 toDecember 2015, which corresponds to the second
part of our sample ofmonthly data.The results reveal that the trading strategies

25http://www.hec.unil.ch/agoyal/.
26http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Table 9.12 Top 10 best trading strategies in a back test over January 1944 to December
2015

Rank Strategy �

1 SMAE(230,2.5) 0.19
2 SMAE(230,2.75) 0.19
3 SMAE(220,2.75) 0.19
4 SMAE(160,4) 0.18
5 SMAE(210,3) 0.18
6 SMAE(210,3.25) 0.18
7 SMAE(220,3) 0.18
8 SMAE(170,3.75) 0.18
9 SMAE(190,3) 0.18
10 SMAE(180,4) 0.17

Notes � = SRMA − SRBH where SRMA and SRBH are the Sharpe ratios of the moving
average strategy and the buy-and-hold strategy respectively

based on the SMAE(n, p) rule show the best performance in a back test.
The corresponding results for back-tests using the monthly data are reported
in Table 9.8. The comparison of the results for the monthly and daily data
suggests the following two noteworthy observations. The first observation is
that when monthly data are used, the best trading strategies are based on
the SMAC(s, l) rule; the strategies based on the SMAE(n, p) rule perform
only marginally worse than the strategies based on the SMAC(s, l) rule. In
contrast, when daily data are used, the best trading strategies are based solely
on the SMAE(n, p) rule; the strategies based on the SMAC(s, l) rule perform
notable worse than the strategies based on the SMAE(n, p) rule. The second
observation is that using daily data produces a higher outperformance in a back
test than using monthly data. Specifically, whereas the best trading strategy in a
back test outperforms the buy-and-hold strategy by� = 0.19when daily data
are used, the best trading strategy in a back test outperforms the buy-and-hold
strategy by � = 0.15 when monthly data are used.

It is worthmentioning that, when daily data used, the most popular (among
practitioners) moving average trading strategy is the SMAC(50,200). In order
to test the robustness of our finding on the superior performance of the SMAE
rule, we used several other choices for the test period and transaction cost
and, regardless of the chosen sample period and amount of transaction costs
(in 0.1–0.5% range), our results suggest that the SMAE rule always out-
performs the SMAC rule. Given this fact, the broad popularity of the
SMAC(50,200) strategy is rather surprising. To highlight the differences
between the performances of the SMAC(50,200) strategy and the
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Fig. 9.13 Rolling 10-year outperformance produced by the SMAE(200,3.75) strategy
and the SMAC(50,200) strategy over period from January 1930 to December 2015. The
first point in the graph gives the outperformance over the first 10-year period from
January 1930 to December 1939. Outperformance is measured by � = SRMA − SRBH

where SRMA and SRBH are the Sharpe ratios of the moving average strategy and the
buy-and-hold strategy respectively

SMAE(200,3.75) strategy,27 Fig. 9.13 plots the rolling 10-year outperfor-
mance produced by the SMAE(200,3.75) strategy and the SMAC(50,200)
strategy over period from January 1930 to December 2015. A visual compar-
ison suggests that the performances of these two alternative strategies differ
marginally. Only during the period from the mid-1980s to the mid-1990s the
performance of the SMAC(50,200) strategy was significantly worse than that
of the SMAE(200,3.75) strategy.
The reader is reminding that both the SMAC and SMAE rules generalize

the P-SMA rule. Specifically, both the SMAC and SMAE rules are designed
to reduce the number of whipsaw trades in the P-SMA rule. In this regard our
results suggest that, when daily data are used, the best method of reducing the
whipsaw trades is using a moving average envelope, not using a shorter moving
average instead of the last closing price.

As a final but important remark, in our tests we always take into account
transaction costs. The results on the best trading strategy in a back test in the

27The SMAE(200,3.75) is not the best trading strategy in a back test. We select this strategy because both
the SMAC(50,200) and the SMAE(200,3.75) strategy use the same 200-day window to detect the trend.
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absence of transaction costs are completely different. In particular, without
transaction costs the best trading strategy in a back test over January 1944 to
December 2015 is the MOM(2) strategy. Note that a Buy (Sell) trading signal
in the MOM(2) strategy is generated when the close price for a day is higher
(lower) than the close price the day before. Therefore this strategy consists in
buying the stocks when the daily price change is positive, and selling the stocks
otherwise; this strategy exploits a very short-term momentum. Figure 9.14
plots the rolling performance of this strategy over the period from January 1927
to December 2015. The graph in this plot suggests that the outperformance
of this strategy was positive and increasing over the period from the early
1940s to the early 1970s. Afterwards, the outperformance delivered by the
MOM(2) strategy was decreasing. From about the early 2000s the MOM(2)
strategy started to underperform the buy-and-hold strategy. This fact suggests
that the very short-term momentum in daily stock prices ceased to exist and
was replaced by a very short-term mean-reversion.
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Fig. 9.14 Rolling 10-year outperformance produced by the MOM(2) strategy in the
absence of transaction costs over the period from January 1927 to December 2015.
Outperformance is measured by � = SRMA − SRBH where SRMA and SRBH are the
Sharpe ratios of themoving average strategy and the buy-and-hold strategy respectively
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9.6.3 Forward-Testing Trading Rules

The set of tested trading rules is the same as in the preceding section. To this
set we add the P-SMA(n) rule where n ∈ [2, 3, . . . , 15, 20, 30, . . . , 350].
The forward-testing methodology is the same as for forward-testing trading
rules using monthly data. The initial in-sample period is from January 1929
to December 1943. Consequently, the out-of-sample period is from January
1944 to December 2015. The forward test is implemented with an expanding
in-sample window. To speed up the simulation of the out-of-sample strategy,
the selection of the best trading strategy in the in-sample window is repeated
every 21th day.
Table 9.13 reports the descriptive statistics of the buy-and-hold strategy and

the out-of-sample performance of the moving average trading strategies when
daily data are used. The corresponding results for monthly data are reported
in Table 9.10. Rather surprisingly, among all single rules only the SMAE rule
outperforms the buy-and-hold strategy in the out-of-sample test. Yet, there
is no evidence that the SMAE rule statistically significantly outperforms the
buy-and-hold strategy. The combined strategy also outperforms the buy-and-
hold strategy; we guess that the combined strategy is largely based on using the
SMAE rule. Other interesting observations that deserve our attention are as
follows. First, the out-of-sample performance of the SMACrule is economically

Table 9.13 Descriptive statistics of the buy-and-hold strategy and the out-of-sample
performance of the moving average trading strategies

Moving average strategy
Statistics BH MOM P-SMA SMAC SMAE MACD COMBI

Mean returns % 11.80 8.68 9.02 8.16 9.47 6.08 9.48
Std. deviation % 15.31 10.80 10.31 10.45 10.26 9.15 10.26
Minimum return % −20.45 −6.86 −6.86 −20.45 −6.86 −6.86 −6.86
Maximum return % 11.59 5.12 5.12 5.12 5.12 5.12 5.12
Skewness −0.66 −0.63 −0.45 −2.12 −0.52 −0.52 −0.52
Kurtosis 19.91 8.15 7.23 58.38 8.02 10.97 8.02
Average drawdown % 2.15 2.20 2.06 2.08 2.03 2.16 2.03
Average max drawdown % 32.60 21.16 17.07 18.90 16.69 18.80 16.23
Maximum drawdown % 55.23 37.59 24.48 39.79 22.59 29.65 21.48
Outperformance −0.07 −0.02 −0.11 0.03 −0.28 0.03
P-value 0.80 0.58 0.87 0.41 0.99 0.39
Rolling 5-year Win % 39.06 38.96 22.30 40.86 24.34 40.86
Rolling 10-year Win % 36.46 46.81 23.69 47.03 19.83 47.03

Notes BH denotes the buy-and-hold strategy, whereas COMBI denotes the ‘‘combined’’
moving average trading strategywhere at eachmonth-end the best trading strategy in a
back test is selected. The notations for the other trading strategies are self-explanatory.
Outperformance is measured by � = SRMA − SRBH where SRMA and SRBH are the
Sharpe ratios of themoving average strategy and the buy-and-hold strategy respectively
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significantly below that of the P-SMA rule. In other words, our tests suggest
that the SMAC rule is worse than the P-SMA rule in out-of-sample tests when
daily data are used. Second, the performance of the EMACD rule is much
worse than the performance of the buy-and-hold strategy. Third, with daily
trading the out-of-sample outperformance is worse than that with monthly
trading.Overall, our forward tests suggest that there is a disadvantage in trading
daily rather than monthly. This result is probably counter-intuitive, but it
strengthens the findings reported by Clare et al. (2013).
The natural question to ask is why daily trading is disadvantageous. We

believe that the answer to this question lies in the fact that daily data are much
noisier than monthly data. To illustrate the aforesaid, an engineering concept
of “signal-to-noise” ratio can be used. In engineering, the signal-to-noise ratio
is defined as the ratio of the signal power to the noise power. In technical
analysis, the signal-to-noise ratio is sometimes used to measure the strength of
a stock price trend. In this context, a signal-to-noise ratio can be computed
as the (absolute) price change over some given period divided by a measure
of price variability during the same period. The total price change in a given
period can be expressed in terms of the mean price change or mean return;
the price variability can be measured using the standard deviation of returns.
Therefore, the daily and monthly signal-to-noise ratios can be measured by

SNRd = μd

σd
, SNRm = μm

σm
,

where SNRd and SNRm are the daily andmonthly signal-to-noise ratios respec-
tively,μd and σd are the daily mean return and standard deviation respectively,
and μm and σm are the monthly mean return and standard deviation respec-
tively. Since both the mean return and variance of returns are directly propor-
tional to time, and there are approximately 21 trading days in a month, the
relation between the monthly and daily signal-to-noise ratios are given by

SNRm ≈ √
21 × SNRd .

This means that the monthly signal-to-noise ratio is almost five times stronger
than the daily signal-to-noise ratio. Therefore, it is easier to distinguish the
signal from the noise when monthly data are used.

Given the fact that daily data are much noisier than monthly data, the
random component of the observed outperformance of the best rule in a
back test is greater when daily data are used. In other words, using daily data
increases the data mining bias as compared with usingmonthly data.Therefore
using daily data substantially increases the chances that the best trading rule in
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Fig. 9.15 Rolling 10-year outperformance produced by the EMACD(12,29,9) strategy
over the period from January 1930 to December 2015. The first point in the graph
gives the outperformance over the first 10-year period from January 1930 to December
1939. Outperformance is measured by� = SRMA−SRBH where SRMA and SRBH are the
Sharpe ratios of themoving average strategy and the buy-and-hold strategy respectively

a back test is the rule that benefitedmost from good luck.The data mining bias
increases dramatically when daily data are used, the sample size is rather short,
and the computation of the trading signal in a technical trading rule depends
on many parameters. Under these conditions, the best trading strategy in a
back test usually performs very poorly out-of-sample, because the parameters
of the trading strategy have been overfit to the in-sample data, a situation
known as “backtest overfitting”.28

In order to demonstrate the danger of backtest overfitting, consider the
performance of the Moving Average Convergence/Divergence rule proposed
by Gerald Appel (see Appel 2005) in the late 1970s.We remind the reader that
the MACD rule uses three exponential moving averages (that is, the rule has
three parameters) and Gerald Appel advocates that the best combination is to
use moving averages of 12, 29, and 9 days. Figure 9.15 plots the rolling 10-year
outperformance produced by the EMACD(12,29,9) strategy over the period
from January 1930 to December 2015. The graph of the outperformance

28Overfitting is a concept borrowed from statistical regression analysis and machine learning. Overfitting
denotes a situation when one fits a larger model than that required to capture the dynamics of the data.
For more information on overfitting concept, see https://en.wikipedia.org/wiki/Overfitting.
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reveals that the EMACD(12,29,9) strategy outperformed the buy-and-hold
strategy basically only during a relatively short historical period from about
the late 1960s to the late 1970s. Apparently, Gerald Appel “discovered” this
strategy in the late 1970s by back-testing many different combinations of three
moving averages using a sample of daily data of about 10 years long. Figure 9.15
convincingly demonstrates that neither before nor after the decade of 1970s
the EMACD(12,29,9) strategy outperformed the buy-and-hold strategy. That
is, the superior performance of the EMACD(12,29,9) strategy is a fluke, not
a regular thing. It is unbelievable that still today, almost 40 years after the
superior performance of this strategy was observed for the last time, numerous
handbooks on technical analysis and numerous web-sites present the EMACD
rule as “themost popular technical indicators in trading” and recommendusing
the EMACD(12,29,9) strategy for beating the market on a daily basis.
To recap, since daily data are much noisier than monthly data, the daily

signal-to-noise ratio is much smaller than the monthly one; this feature makes
the detection of a stock price trend more complicated with daily data. Using
monthly data instead of daily allows one to effectively increase the signal-to-
noise ratio and make easier to distinguish the signal from the noise.

9.7 Defending the Advantages of the Moving
Average Strategy

9.7.1 The Use and Misuse of the Sharpe Ratio

The goal of this section is to elaborate in details on the precise meaning of the
Sharpe ratio and any other rational reward-to-riskmeasure.The problem is that
the Sharpe ratio seems to be a simple concept, but in practical applications the
use of the Sharpe ratio is tricky. For example, themajority of practitioners fail to
understand that the use of the Sharpe ratio is justified if the investor’ preferences
can be represented by a mean-variance utility function.29 On the other hand,
the majority of students who take an MBA degree (or a similar postgraduate
degree) do know that the Sharpe ratio is related to the mean-variance utility
function, but after taking investment courses all they remember is that the
investor must select a portfolio with the highest Sharpe ratio. The students
forget that the ultimate goal of the investor is to maximize the expected utility

29In addition, the majority of practitioner fail to understand that a rational performance measure is not
any arbitrary ratio of reward to risk; a rational performance measure must satisfy a set of specific properties,
see Cherny and Madan (2009) and Zakamulin (2010).
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of his final wealth; in order to achieve this goal, the investor has to allocate
optimally between the risk-free asset and the optimal risky portfolio.
To illustrate the misuse of the Sharpe ratio, and to highlight the fact that

a portfolio with the highest Sharpe ratio can be inferior compared to another
portfolio with a lower Sharpe ratio, consider the following problem presented
to the students on the final exam in a postgraduate course on investments. In
this problem the investor’s attitude toward risk is represented by the mean-
variance utility function defined over returns r

U (r) = E[r ] − 1

200
A × Var [r ], (9.1)

where themean return and standard deviation are measured in percentages and
the investor’s coefficient of risk aversion A = 2. Initially, 70% of the investor’s
wealth is invested to stock A and the rest, 30%, is invested in the risk-free
government securities. The mean return and standard deviation of returns
of stock A are 10% and 31% respectively; the risk-free government securities
provide the rate of return of 3%.The first question asks the students to compute
themean return, standard deviation, andSharpe ratio of the investor’s portfolio.
The problem continues as follows: The investor considers selling govern-

ment securities and investing the proceeds in stock B. The mean return and
standard deviation of returns of stock B are 12% and 36% respectively, and the
correlation coefficient between returns to stocks A and B is 90%. The second
question asks the students to compute the mean return, standard deviation,
and Sharpe ratio of the portfolio of stocks A and B.The third and final question
in this problem asks the students whether the investor should transfer money
from the government securities to stock B.

Practically all students answer correctly to the first and second questions.
Specifically, the correct answers are as follows (to save the space, we skip the
computations). The mean return, standard deviation, and Sharpe ratio of the
investor’s original portfolio are 7.9%, 21.7%, and 0.226. The mean return,
standard deviation, and Sharpe ratio of the portfolio of stocks A and B are
10.6%, 31.77%, and 0.239. Yet, only about 10% of students answer correctly
to the last question. In particular, 90% of students use the Sharpe ratio as a
decision criterion and reason as follows: since the Sharpe ratio of the portfolio
of stocks A and B is higher than that of the portfolio of stock A and government
securities (0.239 > 0.226), the investor should sell the government securities
and invest the proceeds in stock B. This answer is incorrect because for this
specific investor the (expected) utility from holding the portfolio of stocks
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A and B is much lower than the utility of the initial portfolio of stock A and
government securities. Indeed, the utility from the 70/30 portfolio of stock A
and the risk-free securities

U (r) = 7.9 − 2

200
× 21.72 = 3.19,

whereas the utility from the 70/30 portfolio of stock A and stock B

U (r) = 10.6 − 2

200
× 31.772 = 0.51.

As a result, by reallocatingmoney from the government securities to stockB, the
investor significantly deteriorates his utility. Thus, this example demonstrates
that a portfolio with the highest Sharpe ratio is not necessarily the portfolio
that maximizes the investor’s utility.
The reader is reminded that even though the utility function given by (9.1)

is defined over returns, in reality it is a simplified form of the utility function
defined over the investor’s final wealth, see Chap. 7. The investor’s ultimate
goal is not to maximize the Sharpe ratio of his portfolio, but to maximize the
utility that can be derived from his final wealth. According to modern finance
theory, in order tomaximize the utility the investor has to solve two interrelated
problems: (1) select the optimal risky portfolio and (2) select the optimal capital
allocation between the risk-free asset and the (optimal) risky portfolio. The
Sharpe ratio allows the investor to solve only one problem: to select the optimal
risky portfolio. However, the ultimate investor’s goal is not fulfilled unless the
investor selects the optimal capital allocation. Unfortunately, modern finance
theory gives very little consideration to the solution of the second investor’s
problem. All modern finance theory says is that the optimal capital allocation
depends on the investor’s coefficient of risk aversion A; the investor needs to
know the value of his A and make the optimal capital allocation according
to his A. Overall, modern finance theory is basically oriented towards the
needs of a portfolio manager (that is, it tells how to construct the optimal
risky portfolio), not towards the needs of investors (it does not give practical
advice on how to optimally allocate money between the risk-free asset and the
risky portfolio). Therefore for practical investor’s needs the use of the Sharpe
ratio makes little sense if the investor does not know how to allocate money
optimally between the risky portfolio and the risk-free asset.

Another important thing to remember is that the arguments behind the use
of the Sharpe ratio assume the existence of a risk-free asset. These arguments
break down in the absence of the risk-free asset. That is, the Sharpe ratio can
be justified only when the risk-free asset is present. If there is no risk-free asset,
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then modern finance theory tells that the choice of the optimal risky portfolio
is not unique; in this case the optimal risky portfolio depends on the investor
risk preferences (that is, on the investor’s coefficient of risk aversion). To make
the further exposition more concrete, assume that the investor considers the
choice between investing either in portfolio A or portfolio B. Denote the mean
return and standard deviation of portfolio A byμA and σA respectively, and the
mean return and standard deviation of portfolio B by μB and σB respectively.

In some cases the choice of the best risky portfolio does not depend on
the investor’s coefficient of risk aversion. Specifically, according to the mean-
variance criterion, portfolio A dominates portfolio B if

μA ≥ μB and σA ≤ σB

and at least one inequality is strict. To see this, consider the investor utilities

U (rA) = μA − 1

2
Aσ 2

A and U (rB) = μB − 1

2
Aσ 2

B .

Let us find the difference between U (rA) and U (rB)

U (rA) −U (rB) = (μA − μB) − 1

2
A

(
σ 2
A − σ 2

B

)
.

Since μA − μB ≥ 0 and σ 2
A − σ 2

B ≤ 0 and at least one inequality is strict, we
conclude that

U (rA) −U (rB) > 0.

That is, regardless of the value of risk aversion coefficient A, the utility of
portfolio A is higher than that of portfolio B. Consequently, the choice of
the best risky portfolio is easy when some portfolio has higher mean return
(i.e., reward) and, at the same time, lower standard deviation (i.e., risk) than
the other portfolio. In this situation, portfolio A has higher reward and lower
risk than those of portfolio B.

Consider another, much more typical situation:

μA > μB and σA > σB .

That is, in this case portfolio A has higher mean return and higher risk than
portfolio B. In this situation the choice of the risky portfolio depends on the
investor’s coefficient of risk aversion, and there is an investor who is indifferent
between these two portfolios. Specifically, the indifference between portfolios
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A and B means that both portfolios provide the same utility. Formally, this
condition yields

U (rA) = U (rB).

In particular,

μA − 1

2
Aσ 2

A = μB − 1

2
Aσ 2

B .

With the solution
A∗ = 2 × μA − μB

σ 2
A − σ 2

B

.

That is, the investor with A∗ is indifferent between risky portfolios A and B.
In addition, we can easily deduce that more risk tolerant investors (who have
A < A∗) prefer to choose portfolio A, whereas more risk averse investors (who
have A > A∗) prefer to choose portfolio B.

Overall, in this section we demonstrated two important things. First, in
the presence of the risk-free asset the Sharpe ratio facilitates the choice of the
optimal risky portfolio.30 However, without the solution of the optimal capital
allocation problem the ultimate investor’s goal, to maximize the utility of final
wealth, is not achieved. Therefore if the investor is unable to select the optimal
capital allocation, the use of the Sharpe ratio makes little or no sense. Second,
in the absence of the risk-free asset the Sharpe ratio cannot be used at all; in
this case the optimal risky portfolio is investor-specific.

9.7.2 The Asset Allocation Puzzles

Markowitz mean-variance portfolio theory, which is an important part of
modern finance theory, is a sheer example of a normative theory. Specifically,
Markowitz portfolio theory tells the investors how they ought to select optimal
portfolios, but it does not explain how the investors select optimal portfolios
in reality. In fact, the predictions of the mean-variance portfolio theory are in
sharp contrast with the popular investment advice. This discrepancy between
the theory and popular advice gives rise to the so-called “asset allocation puz-
zles”, see Canner, Mankiw, and Weil (1997).

Consider the investor’s allocation between cash (which serves as a risk-
free asset), bonds, and stocks. Mean-variance portfolio theory predicts that
all investors will select the same risky portfolio of stocks and bonds, the only
difference will be in the capital allocation between the cash and the risky

30 In this case the optimal risky portfolio is the same for all investors, see Chap. 7.
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portfolio. More specifically, mean-variance portfolio theory predicts that the
composition of the optimal risky portfolio of stocks and bonds will be the
same for all investors regardless of their levels of risk aversion. In addition, the
composition of the risky portfolio will be the same regardless of the investment
horizon. This means that both short-term and long-term investors will select
the same risky portfolio.
The popular investment advice from financial advisors is as follows. Finan-

cial advisors, first of all, divide all investors into several categories according to
their willingness to take on risk (in other words, according to their risk aver-
sion). For example, all investors can be divided into the following three broad
categories: “conservative”, “moderate”, and “aggressive” (the names are self-
explanatory). Then, for each type of investors, financial advisors recommend
a specific composition of cash/bonds/stocks portfolio. For instance, conser-
vative investors are advised to invest 40% in cash, 40% in bonds, and 20%
in stocks. Aggressive investors, on the other hand, are advised to invest 5%
in cash, 30% in bonds, and 65% in stocks. The first asset allocation puzzle,
therefore, is that the investor’s risk aversion influences the composition of his
portfolio. Financial advisors also tend to recommend that the investor’s time
horizon should influence the composition of his portfolio; this gives rise to
the second asset allocation puzzle. In particular, if the time horizon is long,
investors should invest more aggressively. That is, if the investment horizon is
long, more money should be allocated to stocks. As the investment horizon
gets shorter, the weight of stocks in the portfolio should decrease, whereas the
weight of bonds should increase.

Elton and Gruber (2000) show that relaxing the assumption about the
existence of a risk-free asset allows one to explain the first asset allocation
puzzle. Specifically, without a risk-free asset the composition of the investor’s
optimal portfolio depends on his risk aversion (see the previous section): more
risk tolerant investors prefer to invest more in stocks, whereas more risk averse
investors prefer to allocatemore to bonds.To explain the second asset allocation
puzzle is more challenging. It looks like that the only possible explanation of
the second asset allocation puzzle is to assume that the investor’s risk aversion
depends on length of the investment horizon; yet this assumptions is not quite
reasonable.

One of the serious weak points of modern finance theory in general, and
Markowitz portfolio theory (as well as its equilibrium extension - the Capital
Asset Pricing Model) in particular, is that these theories are built up on the
assumption about the existence of a risk-free asset. This assumption signifi-
cantly simplifies the selection of optimal portfolios and the construction of a
market equilibriummodel. This is because when a risk-free asset is present, the
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optimal portfolio is unique for all investors regardless of their risk preferences.
Relaxing this assumption virtually destroys all existing capital market equi-
librium models (including the models in the Arbitrage Pricing Theory). The
other questionable assumption in modern finance theory is that risk can be
adequately measured by standard deviation (that is, uncertainty). To empha-
size the problem of using uncertainty as a risk measure, consider the following
joke31:

What is riskier - jumping out of an airplane with a parachute or jumping without
one?The answer, surprisingly, depends on how you define risk. If your definition,
like that of most investors, is the chance of a negative outcome - in this case,
death - then without a parachute is the riskier. But if your definition of risk, like
that of most finance professors, is uncertainty, then with a parachute is riskier:
youmay or may not die. If you jump without a parachute there is no uncertainty
and, therefore, no risk.

In 2002 Daniel Kahneman received the Nobel Memorial Prize in Eco-
nomics for the development of a behavioral finance theory (called Prospect
theory) where the investors are loss averse (see Kahneman andTversky, 1979).
The idea of loss aversion is encapsulated in the expression “losses loom larger
than gains” meaning that investors prefer avoiding losses to acquiring equiv-
alent gains. That is, avoiding losses is the fundamental principle in making
decisions under uncertainty. However, long before the advent of Prospect the-
ory of Kahneman and Tversky, Benjamin Graham advocated for the “margin
of safety” investment principle which is basically equivalent to the “avoiding
losses” principle:

Confronted with a challenge to distill the secret of sound investment into three
words, we venture the motto, Margin of Safety. (Benjamin Graham, 1949,
Chap. 16)

The term “margin of safety” was coined by Graham and Dodd already in their
classical book “Security Analysis” from 1934. In this book, Graham proposed
a clear definition of investment that was distinguished from what he deemed
speculation:

An investment operation is one which, upon thorough analysis promises safety
of principal and an adequate return. Operations not meeting these requirements
are speculative.

31This joke is found on http://www.theage.com.au/articles/2004/01/24/1074732659690.html.
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Table 9.14 Probability of loss and mean return over different investment horizons for
three major asset classes

Investment horizon, years
Asset Statistics 1 2 3 4 5 6 7 8 9 10

Cash Probability of loss, % 0 0 0 0 0 0 0 0 0 0
Mean return, % 5 9 14 19 25 30 36 42 49 55

Bonds Probability of loss, % 16 8 4 2 1 0 0 0 0 0
Mean return, % 6 12 18 25 33 41 50 59 69 80

Stocks Probability of loss, % 33 24 15 12 9 4 2 1 0 0
Mean return, % 10 20 30 42 54 65 77 90 104 119

Graham carefully explains each of the key terms in his definition: “thorough
analysis” means “the study of the facts in the light of established standards of
safety and value” while “safety of principal” signifies “protection against loss
under all normal or reasonably likely conditions or variations” and “adequate”
(or “satisfactory”) return refers to “any rate or amount of return, however
low, which the investor is willing to accept, provided he acts with reasonable
intelligence”.

We conjecture that the popular investment advice is deeply rooted in Gra-
ham’s investment philosophy which is, first and foremost, to preserve capital
(termed as “safety of principal”) and then to try to make it grow. It is worth to
recap the two basic principles of Graham’s investment philosophy:

1. The investor must deliberately protect himself against losses;
2. The investor must aspire to “adequate”, not extraordinary, return.

To emphasize the differences between the threemajor asset classes (cash, bonds,
and stocks), we use the monthly total return data on the S&P Composite
index, the bond index, and the cash proxied by 1-month Treasury Bill rate.
The data span the period from January 1926 to December 2011. The bond
index return is an equally-weighted return on the long- and intermediate-term
US government bonds; these data are provided by Ibbotson and Associates
Inc.32 We vary the investment horizon from 1 to 10 years, and for each asset
class we compute the probability of loss and mean return. The probability of
loss is the probability of a negative return over an investment horizon of specific
length; this probability is the probability that the initial value of the principal
will not be preserved by the end of a specific investment horizon. The mean
return is the mean return over an investment horizon of specific length.

32More specifically, these data are from the Ibbotson SBBI 2012 Classic Yearbook.
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Table 9.14 reports the results of estimating the probabilities of loss andmean
returns for threemajor asset classes and different investment horizons.The data
in this table allow us to explain the popular investment advice and the second
asset allocation puzzle in the light of Graham’s investment philosophy.The first
observation is that, regardless of the length of investment horizon, the mean
return to stocks is higher than the mean return to bonds which is higher than
the mean return to cash. In other words, stocks are more rewarding than bonds
that are more rewarding than cash. However, when it comes to the safety of
principal, over short- to medium-term horizons cash is safer than bonds that
are safer than stocks. It is worth noting that cash is a safe asset regardless of the
length of the investment horizon. Specifically, the probability of losing money
on cash investment is zero even though the rate of return is uncertain. In other
words, when the investor allocates money to cash, his return is uncertain over
horizons longer than 1month. Therefore according to modern finance theory
cash is a risky asset for investments beyond 1month. On the other hand, if risk
is measured by losses, not uncertainty, then cash is a risk-free asset regardless
of the length of the investment horizon.

If, for example, the investor wants to invest for only one year, the only
asset that guaranties the safety of principal is cash. As a result, the weights
of cash/bonds/stocks in the investor’s portfolio should be (100%,0%,0%).
However, if the investor wants to invest for 6 years, both cash and bonds
guarantee33 the safety of principal, but bonds provide the highest mean return.
Therefore in this case it makes sense to invest initially in bonds. The weights of
cash/bonds/stocks in the investor’s portfolio in this case can be (0%,100%,0%).
Yet, as the investment horizon shortens, to reduce the probability of loss the
investor should gradually decrease the weight of bonds in his portfolio and
increase the weight of cash. Finally, if the investor wants to invest for 10 years,
both cash, bonds, and stocks guarantee the safety of principal, but stocks
provide the highest mean return. In this case the weights of cash/bonds/stocks
in the investor’s initial portfolio might be (0%,0%,100%). As the investment
horizon decreases to 7–8 years, the investor needs to withdraw some money
from stocks and invest in bonds. When the investment horizon becomes 4–
5 years, the investor should probably withdraw all money from stocks and
allocate between cash and bonds.

Many financial advisors, as well as Benjamin Graham, advocate of always
investing in a portfolio of stocks and bonds. By doing this the investor benefits
from the effect of diversification. Diversification is a term that can be summed
up with the familiar phrase: “don’t put all your eggs in one basket”. Because the

33The usual disclaimer applies. Our estimations are based on using the past data, but the past is not a
guarantee of the future.
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correlation between stocks and bonds returns is usually low,34 bonds typically
counteract stock market losses during bear markets. Even though a portfolio of
stocks and bonds has a reduced mean return as compared to that of stocks, the
reduction of risk through the diversification effect exceeds by far the reduction
of mean return.

9.7.3 The Benefits of the Moving Average Strategy

We remind the reader the ultimate question we are trying to answer in this
chapter: The investor considers investing either in the S&P Composite index
(currently this index is identical to the S&P 500 index) or in the moving
average strategy that switches between the S&P Composite index and the
risk-free asset depending on the identified trend direction. The investor wants
to know whether the moving average strategy will outperform the passive
investment in the S&PComposite index in the future.To answer this question,
using the past data and the forward-testing methodology we evaluated the
outperformance delivered by the moving average strategy and tested whether
the outperformance is statistically significant. Since our tests for structural
breaks in the long-run dynamics of the S&PComposite index revealed a major
break around 1944, in evaluating the expected future outperformance of the
moving average strategy we need to focus on the outperformance during the
post-World War II period.
The results of our forward tests suggest that the outperformance produced

by the moving average trading strategy tends to be positive over a long run.
However, this outperformance is not statistically significant at conventional
statistical levels. On average, our tests say that there is a 70% probability that
the estimated long-run outperformance is a “true outperformance”, but there
is a 30% probability that the outperformance is a result of randomness. In
other words, the chances that the moving average strategy underperforms the
buy-and-hold strategy over a long run are rather high. Therefore the results of
our tests are encouraging, but inconclusive according to the strong scientific
standards.

However, even though in our tests we used the contemporary “state of the
art” performance measurement methodology that is employed in the papers
published in the leading financial journals, one has always to keep in mind that
this performance measurement theory is based on a number of assumptions.
The first problem the investor must realize is that even if all assumptions are
met in practice, and even if the results of tests present statistically significant

34In contrast, the correlation between cash and bonds returns is usually very high. Therefore a portfolio
of cash and bonds is not benefited from the diversification effect.
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evidence that one strategy outperforms the other, this knowledge is of little
value unless the investor knows how to allocate optimally his wealth between
the risk-free asset and the risky portfolio. For example, if for some investor it
is optimal to invest 100% in stocks, and this investor is told that the moving
average strategy outperforms the passive stock investment, there is absolutely
no guarantee that by investing 100% in themoving average strategy the investor
increases his (expected) utility of terminal wealth. Modern finance theory only
tells in this case that using the moving average strategy is better than using the
passive stock index, but in order to benefit from this knowledge the investor
must allocate optimally between the risk-free asset and the moving average
strategy. In order to optimally allocate wealth between the risky portfolio and
the risk-free asset, the investor needs to know his risk aversion coefficient. We
doubt that there is even a single investor who knows the value of his coefficient
A in the mean-variance utility function. Therefore, modern finance theory
is basically oriented toward the needs of portfolio managers, not toward the
needs of investors. The second problem in performance measurement is that
it assumes the existence of a risk-free asset and the possibility of unlimited
borrowing. These assumptions are usually not met in practice which means
that there is no unique solution to the optimal portfolio choice problem.

If we admit that there is no risk-free asset35 in real markets, then the mean-
variance portfolio theory says that the choice of a risky portfolio depends
on the investor’s risk preferences. We found that the moving average strategy
is both less risky and less rewarding than the corresponding buy-and-hold
strategy. Therefore, even within the framework of modern finance theory, in
the absence of a risk-free asset more risk tolerant investors prefer to allocate
to stocks, whereas more risk averse investors tend to allocate to the moving
average strategy. That is, in the absence of a risk-free asset the choice between
the buy-and-hold strategy and the moving average strategy depends on the
investor’s risk preferences; the moving average strategy should be preferred if
the investor risk aversion is relatively high. Summing up, in the mean-variance
framework of modern finance theory when there is no risk-free asset, we can
draw the conclusion that the moving average strategy is likely to appeal to
risk-averse investors.

In addition, our tests revealed that themain advantage of themoving average
trading strategy lies in its superior downside protection. To emphasize this
feature of themoving average strategy, we do the following trick: we compound
the monthly returns to the moving average strategy and the corresponding

35At this moment we use the standard definition of a risk-free asset in modern finance theory. Specifically,
a risk-free asset is an asset that provides a deterministic return. That is, there is no uncertainty in the future
rate of return on this asset.
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Fig. 9.16 Empirical probability distribution functions of 2-year returns on the buy-and-
hold strategy and the moving average strategy. BH denotes the buy-and-hold strategy,
whereas MA denotes the moving average trading strategy

buy-and-hold strategy to returns over 2-year periods.36 Figure 9.16 plots the
empirical probability distribution functions of 2-year returns on the buy-and-
hold strategy and the moving average strategy.

Figure 9.16 advocates that the shapes of the two empirical probability distri-
bution functions are rather different. Specifically, whereas the probability dis-
tribution function of 2-year returns to the buy-and-hold strategy has almost
symmetrical shape around the mean, the probability distribution function
of 2-year returns to the moving average strategy has a distinct right-skewed
shape. It is important to observe that the empirical probability distribution
functions differ mainly in the domain of losses, where the returns are negative.
In contrast, in the domain of gains, where the returns are positive, the two
distribution functions differ only a little. Since the probability of loss equals
the area under the probability distribution function to the left of zero, we
conclude that the probability of losing money over a 2-year horizon is much
higher for the buy-and-hold strategy than for the moving average strategy.
The shapes of the two empirical probability distribution functions suggest

that, when we compare the riskiness of the two alternative strategies using the

36Specifically, we use the period from January 1929 to December 1943 as the initial in-sample segment
of data, and simulate the out-of-sample returns to the moving average strategy over January 1944 to
December 2015 using an expanding in-sample window. The moving average strategy is based on selecting
the best trading rule in a back test among 4 available rules: MOM, SMAC, SMAE, and EMACD. Then
we compound the monthly out-of-sample returns to returns over 2-year periods.
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standard deviation, we compare “apples and oranges”. A correct comparison
of riskiness requires taking into account the differences between the shapes of
the two probability distribution functions. To provide a deeper insight into
the comparative riskiness of several alternative strategies, in addition to the
standard deviation we will also compute the skewness of the probability distri-
bution and the probability of loss. Formally, the probability of loss is defined by

Probability of loss = Prob(r < 0),

where r denotes the return and Prob(·) denotes the probability. The problem
in using the probability of loss as a risk measure is the fact that this measure
tells nothing about the magnitude of potential loss if loss occurs. That is,
in principle, one financial asset may have a higher probability of loss than
the other asset, but the losses on the latter asset might be much more severe
than the losses on the former asset. To complete the picture of losses, we will
also compute the expected loss if loss occurs. This risk measure represents a
specific realization of the popular risk measure that is known under different
aliases: the Conditional Value-at-Risk (CVaR), the Expected Shortfall (ES),
and the Expected Tail Loss (ETL). Formally, the expected loss if loss occurs is
computed as

Expected loss if loss occurs = E[r |r < 0],

where E[r |r < 0] denotes the expected return conditional on the outcome
r < 0.

Besides the descriptive statistics of 2-year returns to stocks (that is, the buy-
and-hold strategy) and themoving average strategy, we compute the descriptive
statistics of 2-year returns to bonds, cash, and the 60/40 portfolio of stocks
and bonds. As before, the bonds return is an equally-weighted return on the
long- and intermediate-term US government bonds. The 60/40 portfolio of
stocks and bonds is popular with pension funds and other long-term investors.
This portfolio mix represents the “rule of thumb” for retirement portfolios.
This portfolio mix also serves as a benchmark in most portfolio discussions.

Table 9.15 reports the descriptive statistics of 2-year returns for the three
major asset classes as well as the descriptive statistics for the moving average
strategy and the 60/40 portfolio mix.The assets in the table are ordered left-to-
right by decreasing mean returns and standard deviation of returns. Observe
that the moving average strategy is located in between the stocks and the
60/40 portfolio mix. This is because the moving average strategy has lower
mean return than that of the stocks, but higher mean return than that of the
60/40 portfolio mix. Similarly, the moving average strategy has lower standard
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Table 9.15 Descriptive statistics of 2-year returns on several alternative assets

Statistics Stocks MA 60/40 Bonds Cash

Mean return, % 25.79 24.10 20.29 12.71 9.06
Standard deviation, % 26.43 20.04 16.81 12.35 6.20
Skewness 0.08 0.94 0.21 1.40 0.87
Probability of loss, % 13.75 7.06 10.47 9.84 0.00
Expected loss if loss occurs, % −16.80 −5.20 −8.33 −2.16

Notes MA denotes the moving average strategy whereas 60/40 denotes the 60/40 port-
folio of stocks and bonds. The descriptive statistics are computed using the data over
the period from January 1944 to December 2011

deviation of returns than that of the stocks, but higher standard deviation of
return than that of the 60/40 portfolio mix. That is, judging by the mean-
variance criterion, the moving average strategy is more rewarding than the
60/40 portfolio mix, but at the same time it is more risky.

On the other hand, when risk is measured by the probability of loss and
expected loss, the moving average strategy proves to be less risky than the
60/40 portfolio mix. In other words, if we define risk as the chance of a
negative outcome, then the moving average strategy is both more rewarding
and less risky than the popular retirement portfolio. The fact, that the moving
average strategy has higher standard deviation than that of the popular portfolio
mix, appears mainly because the moving average strategy has higher variability
(as compared with the 60/40 portfolio) in the domain of gains, which has
nothing to do with riskiness. Interestingly, the moving average strategy has
lower probability of loss than that of bonds. However, as revealed by the
expected loss risk measure, losses on the moving average strategy tend to be
more severe as compared with losses on bonds. Finally note that over a 2-year
horizon the cash is clearly a risky asset if risk is measured by standard deviation.
Specifically, the standard deviation of 2-year returns on cash amounts to about
6% which is about twice as low as that of bond returns. In contrast, when risk
is measured by the probability of loss, the cash remains a risk-free asset.

Compared to the passive investment in stocks, the moving average strategy
has a bit lower mean return, but at the same time substantially lower risk
that is measured by the probability of loss and expected loss. In particular,
the moving average strategy has twice (thrice) as low the probability of loss
(the expected loss) as that of the buy-and-hold strategy.37 Even though the

37This fact suggests that using the Sortino ratio formeasuring themoving average strategy’s outperformance
makes much more sense than using the Sharpe ratio. However, replacing the Sharpe ratio with the Sortino
ratio in out-of-sample tests does not influence the outcome of these tests: we cannot reject the hypothesis
that the moving average strategy does not outperform the buy-and-hold strategy. This result agrees very
well with the results reported by Zakamulin (2014) who also used the Sortino ratio for measuring the
outperformance. One can logically assume that, for measuring the outperformance correctly, monthly
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long-run growth from investing in stocks exceeds the long-run growth provided
by the moving average strategy, over short- to medium-term horizons the
moving average strategy is much less risky than the buy-and-hold strategy.
Therefore the moving average strategy appeals not only to risk averse investors
who invest for a long-run, but also to less risk averse investors who invest for
a medium-run. As compared to the popular 60/40 portfolio mix, the moving
average strategy seems to have a superior reward-to-risk combination. Thus,
the moving average strategy seems to be a better retirement portfolio than the
60/40 portfolio. For the sake of illustration, Fig. 9.17 plots the cumulative
returns to the moving average strategy versus the cumulative returns to the
60/40 portfolio of stocks and bonds.
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Fig. 9.17 Cumulative returns to themoving average strategy versus cumulative returns
to the 60/40 portfolio of stocks and bonds over January 1944 to December 2011. MA
denotes the moving average strategy whereas 60/40 denotes the 60/40 portfolio of
stocks and bonds. The returns to the moving average strategy are simulated out-of-
sample using an expanding in-sample window. The initial in-sample period is from Jan-
uary 1929 to December 1943

Lust but not least, the returns to the moving average strategy resemble the
returns to a popular “portfolio insurance” strategy. In particular, traditional
portfolio insurance strategy consists in investing in stocks and buying put

returns should be replaced by, for example, 2-year returns. However, in this case we have only 35 non-
overlapping 2-year return observations during the out-of-sample period from 1944 to 2015. This sample
is too small; the main issue with a small sample size is low power of statistical tests.
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options on stocks as insurance. The price of these put options represents,
in fact, the insurance premium the investor pays to buy portfolio insurance.
During bull markets when stock prices trend upward, the insurance premium
reduces the investor’s return (because put options expire worthless). However,
during bear markets when stock prices trend downward and the investor loses
on the stocks, the portfolio insurance covers a part of the losses. As a result, the
portfolio insurance strategy underperforms the buy-and-hold strategy during
bull markets, but outperforms the buy-and-hold strategy during bear markets.
Similarly, we found that the moving average strategy tends to underperform
(outperform) the buy-and-hold strategy during bull (bear) markets. In contrast
to the traditional portfolio insurance strategy, in the moving average strategy
eventual losses on the stocks are “covered” only partially, and the amount of
covered losses varies over time. Anyway, the moving average strategy represents
a prudent investment strategy for a risk averse investor (or as a retirement
portfolio) because its mean return and risk are reasonably consistent with his
objectives and risk tolerance.

9.8 Chapter Summary

In this chapter we utilized the longest historical sample of monthly data on the
S&PComposite stock market index with the goal to comprehensively evaluate
the outperformance delivered by the moving average trading strategy. Yet while
long history provides us with rich information about the past performance of
moving average rules, the availability of long-term data is both a blessing and
a curse. This is because in order to use the observed outperformance over a
very long-term as a reliable estimate of the expected outperformance in the
future, we need to make sure that the stock market dynamics both in the
distant and near past were the same. However, the results from our robustness
tests and tests for structural breaks revealed evidence of a major regime shift
in the stock market dynamics that occurred around 1944. Specifically, starting
from around 1944 the growth rate of the S&P Composite index has more
than doubled. Most importantly, we found evidence that the average bull
(bear) market duration has increased (decreased) over time. As compared with
the first sub-period, over the second sub-period the ratio of the average bull
market length to the average bear market length has almost doubled. Since the
benefits of themoving average trading strategy come from timely identification
of bear market states and moving to cash, it is only logical to conclude that the
profitability of the moving average strategy has diminished over time.
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Westarted our examination of the performance andproperties of themoving
average trading strategies by conducting back-tests. Even though the perfor-
mance of the best trading rules in a back test is upward-biased and, therefore,
it cannot be used as a reliable estimate of the expected future performance of
these trading rules, the results of the back-tests allow us to draw the following
useful conclusions:

• The short selling strategy, when the trader sells stocks shortwhen a Sell signal
is generated, is risky and does not pay off. Specifically, the performance of
the short selling strategy is substantially worse than the performance of
the corresponding strategy where the trader switches to cash. The poor
performance of the short selling strategy is a result of the fact that the
moving average strategy identifies the bull and bear stock market states
with a poor precision.

• From a practical point of view, when either daily or monthly data are used,
the choice of performance measure does not have a crucial influence on the
selection of the best trading strategy in a back test. Therefore the Sharpe
ratio, which has become the industry standard for measuring risk-adjusted
performance, seems to be the most natural choice for performance mea-
surement.

• From a practical point of view, the choice of moving average does not have
a crucial influence on the performance of moving average trading strategies.
In particular, regardless of the choice of moving average, the performance
of the best trading strategy in a back test remains virtually intact. In this
regard, the SMA can be preferred as the simplest, best known and best
understood moving average.

• Using the monthly data, the best trading strategy in a back test over the
post-1944 period is the SMAC(2,10) strategy. This trading strategy is also
among the top 10 best trading strategies over the total historical sample.
In particular, we found that the Moving Average Crossover rule, that uses
one shorter SMA with window size of 2months and one longer SMA with
window size of 10months, performs best in back tests.

• The price-change weighting function in the SMAC(2,10) strategy has a
humped-shape form that differs only marginally from the decreasing shape
of the price-change weighting function in the popular P-SMA(10) strategy.

• The SMAC(2,10) strategy identifies the direction of the stock price trend
using the 10-month SMA. This allows us to estimate that the average lag
time in identification of turning points in the stock price trend amounts to
4.5months. Therefore, as a ballpark estimate, the duration of a bear market
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should be at least 12months in order to make the trend following strategy
profitable.

• Even in a back test the performance of the SMAC(2,10) strategy is very
uneven over time; this strategymight underperform the buy-and-hold strat-
egy over relatively long periods. However, this finding should not be sur-
prising because the moving average strategy is virtually doomed to under-
perform the buy-and-hold strategy during bull markets (when the moving
average strategy generates some false Sell signals).

• The SMAC(2,10) strategy, which uses the averaging window of 10months,
is the optimal strategy over a long run that spans periods of many decades
long. Over a period of one decade, the size of the optimal averaging window
varies from 4 to 16months. This result suggests that the SMAC(2,10)
strategy is not a strategy that is optimal in any given historical period, but
rather a strategy that is optimal on “average” over a long run.

In order to provide a reliable estimate of the real-life outperformance deliv-
ered by the moving average trading strategy, we performed forward (that is,
out-of-sample) tests. Even though conventional wisdom says that the out-of-
sample performance of a trading strategy provides an unbiased estimate of its
real-life performance, we demonstrated a serious deficiency in the traditional
out-of-sample testing procedure. Specifically, we demonstrated that the results
of forward tests of profitability of moving average trading rules depend, some-
times crucially, on the choice of the historical period where the trading rules
are tested and on the choice of split point between the initial in-sample and
out-of-sample subsets. This is because both the in-sample and out-of-sample
performance of the moving average trading strategy is very uneven over time.
In this regard, our choices for historical periods and split points are made
in order to provide the most objective, unbiased, and typical picture of the
out-of-sample outperformance that is delivered by the moving average trading
strategy. The results of our forward tests suggest the following conclusions:

• Over the out-of-sample period from 1870 to 2015 themoving average strat-
egy tends to statistically significantly outperform the buy-and-hold strategy.

• Over the most relevant post-1944 out-of-sample period, our tests suggest
that the moving average strategy tends to outperform the buy-and-hold
strategy over a long run. However, this outperformance is not statistically
significant at conventional statistical levels.

• Using daily data instead of monthly does not allow improving the out-of-
sample performance of the moving average trading strategy. In fact, our
results reveal that the out-of-sample performance of the moving average
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strategy deteriorates when daily data are used instead of monthly. Our
results also suggest that only the Moving Average Envelope (MAE) rule
tends to outperform the buy-and-hold strategy in out-of-sample tests when
daily data are used.

• Our results advocate that the out-of-sample performance of the moving
average trading strategy tends to be better when an expanding in-sample
window is used. The best out-of-sample performance is usually achieved
when the in-sample window contains periods of severe market downturns.

• The moving average strategy has lower mean return and lower standard
deviation of returns than those of the buy-and-hold strategy. The main
advantage of the moving average trading strategy seems to be its superior
downside protection. Specifically, the moving average strategy has substan-
tially smaller drawdowns compared to the buy-and-hold strategy.

• The moving average strategy tends to underperform (outperform) the buy-
and-hold strategy during bull (bear) markets. Even though the moving
average strategy tends to outperform the buy-and-hold strategy during bear
markets, this strategy also suffers losses during bear markets. However these
losses are significantly smaller compared to losses suffered by the buy-and-
hold strategy.

• Themoving average strategy identifies the bull and bear states of the market
with about 75% precision. In other words, the moving average strategy
generates correct Buy and Sell signals about 75% of time. The estimated
delay between the Bull-Bear states of the market and the periods of Buy-Sell
trading signals amounts to 4months. This number agrees very well with
the average lag time of SMA(10) which amounts to 4.5months.

• The out-of-sample outperformance is very uneven in time and is not guar-
anteed. In fact, our results suggest that over short- tomedium-termhorizons
the market timing strategy is more likely to underperform the market than
to outperform.

• The out-of-sample performance of trading rules that have a smaller number
of parameters tends to be better than that of the rules that have a larger
number of parameters. For instance, the out-of-sample performance of the
P-SMA rule tends to be better than that of the SMAC rule.The performance
of the P-SMA rule seems to be more robust than the performance of the
MOM rule. This conclusion agrees with the results reported by Zakamulin
(2015).
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Armed with the results of numerous in-sample and out-of-sample tests, we
are able now to revisit the myths regarding the superior performance of the
moving average trading strategy. Specifically, many studies of the moving aver-
age trading strategy report that this strategy allows investors both to enhance
returns and greatly reduce risk as compared to the buy-and-hold strategy. For
example, Faber (2007) claims that the moving average trading strategy pro-
duces “equity-like returns with bond-like volatility and drawdowns”. We can
say with full confidence that this claim is obviously false. In particular, in
out-of-sample tests the moving average strategy produces lower mean returns
compared to the buy-and-hold strategy. As compared to bonds, the moving
average strategy has higher volatility and larger drawdowns.
The other issue with many studies of the moving average trading strategy is

that their results and claims create an illusion that the outperformance delivered
by the moving average strategy is time invariant. The investors are deluded by
a wrong belief that the moving average strategy always beats the buy-and-
hold strategy. Such studies mislead the investors; many investors who invested
in the moving average trading strategy from about 2009 have been utterly
disappointed in the performance of this strategy because it underperformed
the buy-and-hold strategy from 2009 to 2015 on year-to-year basis. These
investors were not told that one has to expect that the moving average strategy
underperforms during bull markets. Even during bear markets this strategy
tends to underperform the buy-and-hold strategy when bear markets have a
relatively short duration.

However, our results do not indicate that the market timing with mov-
ing averages has no sense. On the contrary, according to our evaluation the
moving average trading strategy represents a prudent investment strategy for
“moderate” and even “conservative” medium- and long-term investors. This
is because the returns to the moving average trading strategy resemble the
returns to the popular portfolio insurance strategy; the insurance premium
reduces the returns if stock prices increase, but partially covers losses when
stock prices decrease. As compared to the popular among long-term investors
60/40 portfolio of stocks and bonds, the moving average strategy seems to have
a superior reward-to-risk combination. Specifically, when risk is measured by
the probability of loss and the expected loss if loss occurs, the moving average
strategy has both higher mean return and lower risk than the 60/40 portfolio
mix.
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Appendix 9.A: Testing for a Regime Shift in
Stock Market Dynamics

The results reported in Table 9.1 suggest that the stock market mean (capital
gain and total) returns and volatilities were different across the two sub-periods.
To find out whether these differences are statistically significant, we perform
the tests of the following null-hypotheses:

Equality of means: H1
0 : μ1,CAP = μ2,CAP , H2

0 : μ1,T OT = μ2,T OT ,

Equality of variances: H3
0 : σ 2

1,CAP = σ 2
2,CAP , H4

0 : σ 2
1,T OT = σ 2

2,T OT ,

where, for example, μ1,CAP and μ2,CAP denote the mean capital gain return
during the first and the second sub-period respectively, andσ1,CAP andσ2,CAP
denote the standard deviation of the capital gain return during the first and the
second sub-period respectively. The first and the second null-hypotheses (H1

0
and H2

0 ) are standard null hypotheses for testing equality of two means. The
third and the forth null-hypotheses (H3

0 and H4
0 ) are standard null hypotheses

for testing equality of two variances. Since virtually all returns series exhibit
non-normality and serial dependency, to test all the hypotheses we employ the
stationary block-bootstrapmethod of Politis andRomano (1994).38Table 9.16
reports the results of the hypothesis tests. These results suggest that we have
strong statistical evidence that the volatilities of both the capital gain and total
returns have changed over time.We cannot reject the hypothesis that the mean
total market return has been stable over time. However, at the 10% significance
level we can reject the hypothesis about the stability of the mean capital gain
returns over time.

Since our results advocate that there are economically and statistically signif-
icant differences in the mean capital gain returns across the two sub-periods of
data, we perform an additional structural break analysis whose goal is twofold.
The first goal is to verify that there is a major break in the growth rate of S&P
Composite index. The second goal is to find the date of the breakpoint.

Table 9.16 Results of the hypothesis tests on the stability of means and standard devi-
ations over two sub-periods of data

Hypothesis p-value Hypothesis p-value

H1
0 : μ1,CAP = μ2,CAP 0.09 H3

0 : σ 2
1,CAP = σ 2

2,CAP 0.00
H2
0 : μ1,T OT = μ2,T OT 0.34 H4

0 : σ 2
1,T OT = σ 2

2,T OT 0.00

38For the description of the stationary bootstrap method, see Chap. 7.
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Our null hypothesis is that the period t log capital gain return on the
S&P Composite index, rt , is normally distributed with constant mean μ and
variance σ 2. More formally, rt ∼ N (

μ, σ 2
)
. Under this hypothesis the log

of the S&P Composite index at time t is given by the following linear model

log (It ) = log (I0) +
t∑

i=1

ri = log (I0) + μ t + εt , (9.2)

where I0 is the index value at time 0 and εt ∼ N (
0, σ 2t

)
. Our alternative

hypothesis is that the mean log capital gain return on the S&P Composite
index varies over time. To test the null hypothesis, there are many formal tests
(see Zeileis et al. 2003, and references therein). Unfortunately, the error term
in regression (9.2) does not satisfy the standard i.i.d. assumptions (because εt
exhibits heteroskedasticity and autocorrelation) and therefore these tests are
not applicable in our case.

Our simplified alternative hypothesis is that the mean log return at time t∗
changes from μ to μ+ δ. Under the alternative hypothesis the log of the S&P
Composite index at time t is given by the following segmented model

log (It) = log (I0) + μ t + δ
(
t − t∗

)+ + εt , (9.3)

where (t − t∗)+ denotes the positive part of the difference (t − t∗). In this
case the natural test of the null hypothesis is

H0 : δ = 0.

We find the breakpoint t∗ using the methodology presented in Muggeo
(2003). Both the models (given by equations (9.2) and (9.3)) are estimated
using the total sample period 1857–2015. The results of the estimations of
the two alternative models are reported in Table 9.17. The p-values of the
estimated coefficients are computed using the heteroskedasticity and autocor-
relation consistent standard errors.

Apparently, the we can reject the null hypothesis of constant log mean
return at the 1% significance level. The segmented model has a higher
R-squared (98% versus 90% for the linear model) and double as low the resid-
ual standard deviation (27% versus 62% for the linear model). The estimated
date of the breakpoint is September 1944; therefore January 1944 is chosen as
the start of the second sub-period of our data. The 95% confidence interval
for the breakpoint date is from September 1943 to September 1945. Under
the assumption of constant mean log returns, over the total sample period
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Table 9.17 Results of the estimations of the two alternative models using the total
sample period 1857–2015

Linear model Segmented model

Intercept log (I0) −7.05e-01 1.62e-01
(0.00) (0.00)

Coefficient μ 3.45e-03 1.73e-03
(0.00) (0.00)

Coefficient δ 4.11e-03
(0.00)

Adjusted R-squared 0.90 0.98
Residual std. deviation 0.62 0.27

Notes The linear model is given by log (It ) = log (I0) + μ t + εt . The segmented model is
given by log (It ) = log (I0)+μ t+δ (t − t∗)++εt . The p-values of the estimated coefficients
are given in brackets. The estimated breakpoint date is September 1944

(that spans 159 years) the estimated mean log return amounts to approxi-
mately 4% in annualized terms. However, this assumption proofs to be wrong
and a more detailed examination of the growth rate of the log of the S&P
Composite index suggests that around year 1944 (87 years from the start of
the sample) there was a major break in the growth rate. Specifically, prior to
1944 the estimated mean log return was about 2%, thereafter about 7% in
annualized terms.

Appendix 9.B: Testing for a Structural Break
in Bull-Bear Dynamics

Consider a two-stateMarkov switchingmodel for returns where St denotes the
latent state variable at time t . The state variable can take one of two possible
values: 0 (denotes a Bear market state) and 1 (denotes a Bull market state).
This Markov switching model for returns in sub-period m ∈ {1, 2} can be
written as

rmt |St ∼ N
(
μm
St ,

(
σm
St

)2)
,

pmi j = Pm(St = j |St−1 = i),

where i, j ∈ {0, 1}. This model assumes that the stock market returns at
time t of sub-period m are normally distributed with mean μm

0 and standard
deviation σm

0 if the market is in state 0. Otherwise, in state 1, the stock market
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returns are normally distributed with mean μm
1 and standard deviation σm

1 .
pmi j is the probability of transition from state i to state j in sub-period m. The
transition probability matrix in sub-period m is given by

Pm =
[
pm00 pm01
pm10 pm11

]
.

For example, p00 is the transition probability from a bear market to a bear
market (or the probability that the market remains in Bear state), while p01 =
1− p00 is the transition probability from a bear market to a bull market. If at
time t the market is in the Bear state, then at the next time t + 1 the market
remains in the Bear state with probability p00 or transits to the Bull state with
probability p01. Observe that the lower the transition probability p01, the
longer the market remains in the Bear state and, consequently, the longer the
average duration of bear markets.
To find out whether the parameters of the bull and bear markets are the

same in both sub-periods, we test the following set of null-hypotheses:

Equality of means: H1
0 : μ1

0 = μ2
0, H2

0 : μ1
1 = μ2

1,

Equality of variances: H3
0 :

(
σ 1
0

)2 =
(
σ 2
0

)2
, H4

0 :
(
σ 1
1

)2 =
(
σ 2
1

)2
,

Equality of probability transition matrices: H5
0 : P1 = P2.

To test hypotheses 1–2, we perform a standard two-sample t-test for equal
means. To test hypotheses 3–4, we perform a standard two-sample F-test for
equal variances.

We test the equalities of the two transition probability matrices by perform-
ing element-by-element tests of the stability of each entry pmi j . To estimate the
transition probability pmi j and standard errors of estimation of pmi j , we use a
bootstrap estimation approach proposed by Kulperger and Rao (1989). The
bootstrap approach follows these steps: First, using the original data sequence
of Bull and Bear markets, we estimate the transition probability matrix by
employing the maximum likelihood estimator. Second, we generate 100 boot-
strap samples of the data sequences following the conditional distributions of
states estimated from the original one. Third, we apply maximum likelihood
estimation on each bootstrapped data sequence. Forth, the estimated transition
probability is computed as the average of all maximum likelihood estimators.
Finally, after computing the average, we compute the standard deviation of
our estimator and corresponding standard error of estimation. The hypothesis
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Table 9.18 Estimated transition probabilities of the two-states Markov switching
model for the stock market returns over two historical sub-periods: 1857–1943 and
1944–2015

1857–1943 1943–2015
Bear Bull Bear Bull

Bear 0.939 0.061 0.916 0.084
Bull 0.042 0.958 0.030 0.970

H
5q
0 : p1i j = p2i j , q ∈ {1, 2, 3, 4}, is tested assuming that errors are normally

distributed.
Table 9.18 reports the estimated transition probabilities of the Markov

switchingmodel for the stockmarket states over the two historical sub-periods.
The comparison of the values of transition probabilities over the two his-
torical sub-periods also advocates that the duration of the bear (bull) mar-
kets has decreased (increased) over time. Specifically, p101 = 0.061 whereas
p201 = 0.084. This says that during the first sub-period the transition proba-
bility fromabear to a bullmarketwas 6.1%,whereas over the second sub-period
the transition probability from a bear to a bull market was 8.4%. That is, the
transition probability from a Bear state to a Bull state has increased over time.
As a consequence, the average length of bear markets has become shorter over
time. Similarly, p110 = 0.042 whereas p210 = 0.030. This says that during
the first sub-period the transition probability from a bull to a bear market was
4.1%, whereas over the second sub-period the transition probability from a
bull to a bearmarket was 3.0%. As a result, the average duration of bull markets
has become longer over time.
Table 9.19 reports the results of the hypothesis tests. These results suggest

that we have strong statistical evidence that all the transition probabilities
between the states of the stock market have changed over time (that is, we
can reject the equality of the transition probability matrices over the two sub-
periods), the mean stock market return during Bull states has changed over
time, and that the volatility of the states have changed over time as well. Yet,
we cannot reject the hypothesis that the mean stock market return during Bear
states has been stable over time.
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Table 9.19 Results of the hypothesis testing on the stability of the parameters of the
two-states Markov switching model for the stock market returns over the two sub-
periods

Hypothesis p-value

H1
0 : μ1

0 = μ2
0 0.93

H2
0 : μ1

1 = μ2
1 0.04

H3
0 : (

σ 1
0

)2 = (
σ 2
0

)2 0.00
H4
0 : (

σ 1
1

)2 = (
σ 2
1

)2 0.00

H51
0 : p100 = p200 0.00

H52
0 : p101 = p201 0.00

H53
0 : p110 = p210 0.00

H54
0 : p111 = p211 0.00
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10
Trading in Other Financial Markets

10.1 The Set of Tested Strategies and General
Methodology

The majority of our data come at the monthly frequency; for some markets
we have corresponding data at the daily frequency. Using monthly data, the
following set of rules are back-tested:

MOM(n) for n ∈ [2, 25], totally 24 trading strategies;
SMAC(s, l) for s ∈ [1, 12] and l ∈ [2, 25], totally 222 trading strategies;
SMAE(n, p) for n ∈ [2, 25] and p ∈ [0.25, 0.5, . . . , 10.0], totally 1,060
trading strategies;

Using daily data, the following set of rules are back-tested:

MOM(n) for n ∈ [2, 3, . . . , 15, 20, 30, . . . , 350], totally 48 trading
strategies;
SMAC(s, l) for s ∈ [1, 2, . . . , 20, 25, . . . , 80] and l ∈ [2, 3, . . . , 15, 20,
30, . . . , 350], totally 1,144 trading strategies;
SMAE(n, p) for n ∈ [2, 3, . . . , 15, 20, 30, . . . , 350] and p ∈ [0.25,
0.5, . . . , 10.0], totally 1920 trading strategies;

With monthly (daily) data, for each financial asset the overall number of tested
trading strategies amounts to 1,206 (3,112).

We do not include the MACD rule in the set of tested rules. Because this
rule is very flexible and easier to fit to data than the other rules, this rule tends
to be over-represented among the best trading rules in a back test. However,
© The Author(s) 2017
V. Zakamulin, Market Timing with Moving Averages, New Developments
in Quantitative Trading and Investment, DOI 10.1007/978-3-319-60970-6_10

223

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



224 V. Zakamulin

because this rule is prone to overfit the data, this rule usually delivers a poor
performance in forward tests.

Regardless of the data frequency, in stockmarkets the returns to all strategies
are simulated accounting for 0.25% one-way transaction costs; in all other
markets the returns to all strategies are simulated accounting for 0.1% one-
way transaction costs. In all strategies a Sell signal is usually a signal to leave the
market andmove to cash (or stay invested in cash). In currency and commodity
markets we also investigate the performance of the strategy with short sales.
The performance of all strategies is measured using the Sharpe ratio.

In our forward tests, the set of tested trading rules is the same as in back tests
with one extension. Specifically, we add the P-SMA(n) rule where n ∈ [2, 25]
with monthly trading and n ∈ [2, 3, . . . , 15, 20, 30, . . . , 350] with daily
trading. Therefore with monthly (daily) trading, the total number of tested
strategies amounts to 1,084 (3,160). The forward tests are implemented with
an expanding in-samplewindow.Withmonthly trading the selection of the best
trading strategy in the in-sample window is repeated every month. With daily
trading, to speed up the simulation of the out-of-sample strategy, the selection
of the best trading strategy in the in-sample window is repeated every 21th
day. The null hypothesis of no outperformance is tested using the stationary
block-bootstrap method consisting in drawing 10,000 random resamples with
the average block length of 5 months.

10.2 Stock Markets

10.2.1 Data

In this section we use monthly and daily data on five stock market indices in
the US (as well as the data on the risk-free rate of return). They are the Dow
Jones Industrial Average (DJIA) index, the large cap stock index, the small cap
stock index, the growth stock index, and the value stock index. All data span
the period from July 1926 to December 2015. Until the end of 1952, stock
exchanges in the US were open 6 days a week. Beginning from 1953, stocks
were traded 5 days a week only. Therefore, for the sake of consistency of daily
data series, we remove the return observations on Saturdays; the return on each
removed Saturday is added to the return on the next trading day.
The DJIA index is a price-weighted stock index. Specifically, the DJIA is an

index of the prices of 30 large US corporations selected to represent a cross-
section of US industry. The components of the DJIA have changed 51 times
in its 120 year history. Changes in the composition of the DJIA are made to
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reflect changes in the companies and in the economy. The daily DJIA index
values for the total sample period and dividends for the period 1988 to 2015
are provided by S&PDow Jones Indices LLC, a subsidiary of theMcGraw-Hill
Companies.1 The dividends for the period 1926 to 1987 are obtained from
Barron’s.2 Dividends are 12-month moving sums of dividends paid on the
DJIA index. The monthly data series are obtained from daily data series using
the close index values at the end of each calendar month. Daily and monthly
index values are used to compute the daily and monthly capital gain returns
respectively. The daily dividend yield is the simple daily yield that, over the
number of trading days in the month, compounds to 1-month dividend yield.
The total returns are obtained by summing up the capital gain returns and the
dividend yields.

All other data are obtained from the data library of Kenneth French.3 The
returns on the large (small) cap index are the returns on the value-weighted
portfolio consisting of the top (bottom) quintile (20%) of all of the firms
in the aggregate US stock market after these firms have been sorted by their
market capitalization. The number of stocks in the large cap index varies from
100 to 500. Thus, the return on the large cap index roughly corresponds to
the return on the S&P Composite stock price index. Therefore the results for
the large cap index can be used to check the robustness of our results for the
S&P Composite index; we expect that the moving average strategy delivers
similar outperformance for both the large cap index and the S&P Composite
index. The returns on the growth (value) stock index are the returns on the
value-weighted portfolio consisting of the top (bottom) quintile of all of the
firms in the aggregate US stock market after these firms have been sorted by
their book-to-market ratios.

All monthly data contain both the capital gain returns and total returns.
When monthly data are used, trading signals are computed using the prices
not adjusted for dividends. However, all daily data, but the data for the DJIA,
contain the total returns only; the daily data on capital gain returns are not
available in the data library of Kenneth French. Therefore, when daily data are
used, trading signals are computed using the prices adjusted for dividends.

By definition, growth stocks (a.k.a. the “glamour” stocks) are stocks of
companies that generate substantial cash flow and whose earnings are ex-
pected to grow at a faster rate than that of an average company. Value s-
tocks are stocks that tend to trade at a lower price relative to its funda-
mentals and thus considered undervalued by investors. Common charac-

1http://www.djaverages.com.
2http://online.barrons.com.
3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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teristics of such stocks include a high dividend yield, low price-to-book
ratio, and low price-to-earnings ratio. Small cap stocks are stocks of com-
panies with a relatively small market capitalization. Both the small stocks and
value stocks are riskier than the large stocks, but at the same time they are
more rewarding. Historically, the small stocks and value stocks outperformed
the stock market as a whole (as well as the large stocks) on the risk-adjusted
bias judging by either the Sharpe ratio or the alpha in the Capital Asset Pricing
Model. The growth stocks, on the other hand, are a bit more risky than the
large stocks and, at the same time, underperform a little the large stocks.

10.2.2 Back-Testing Trading Rules

Table 10.1 shows the top 10 best trading strategies in a back test over the
period from January 1944 to December 2015. The results reported in this
table suggest the following observations:

• Withmonthly trading, the SMAE rule is over-represented among the top 10
best trading strategies. With daily trading, virtually all top 10 best trading
strategies are based on using the SMAE rule. This result advocates that the
SMAE rule is superior to both the MOM and SMAC rules.

• With monthly trading, the SMAC(2,10) strategy is the best strategy for
trading the S&P Composite index (in a back test over 1944–2015). The
SMAC(2,10) strategy is also the second best strategy in trading the growth
stocks. For the large stocks, the best trading strategy is the SMAC(2,11)
strategy; the SMAC(2,12) is also among the top 10 best trading strategies.

• Outperformance delivered by the moving average trading rules depends
on the stock index. Specifically, outperformance is the largest for the small
stocks and the lowest for the DJIA index.

• In a back test, trading daily versus monthly allows the trader to improve
the outperformance. The advantage in trading daily is the lowest for the
DJIA index and the largest for the small stocks. In particular, for the
small stocks the outperformance with daily trading is triple as much as
the outperformance with monthly trading.

• The optimal size of the averaging window depends on the stock index. For
trading the DJIA, the large stocks, and the growth stocks, the optimal size
of the averaging window varies in between 190 and 220 days. For trading
the value stocks, the optimal size of the averaging window varies in between
100 and 120 days. Finally, for trading the small stocks the optimal size of
the averaging window varies in between 15 and 30 days.

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



10 Trading in Other Financial Markets 227

Ta
b
le

10
.1

To
p
10

b
es
t
tr
ad

in
g
st
ra
te
g
ie
s
in

a
b
ac

k
te
st

R
an

k
St
ra
te
g
y

�
St
ra
te
g
y

�
St
ra
te
g
y

�
St
ra
te
g
y

�
St
ra
te
g
y

�

D
JI
A

La
rg

e
st
o
ck

s
Sm

al
ls
to

ck
s

G
ro

w
th

st
o
ck

s
V
al
u
e
st
o
ck

s
Tr
ad
in
g
at
th
e
m
on
th
ly
fr
eq
ue
nc
y

1
SM

A
E(
5,
5)

0.
06

SM
A
C
(2
,1
1)

0.
13

SM
A
E(
2,
0.
25

)
0.
31

SM
A
E(
10

,1
)

0.
07

SM
A
E(
3,
2.
75

)
0.
10

2
SM

A
E(
6,
4.
75

)
0.
06

SM
A
E(
9,
2)

0.
12

M
O
M
(2
)

0.
31

SM
A
C
(2
,1
0)

0.
07

SM
A
E(
4,
3)

0.
08

3
SM

A
E(
6,
5)

0.
04

SM
A
E(
10

,2
.2
5)

0.
12

P-
SM

A
(2
)

0.
31

SM
A
C
(2
,1
1)

0.
07

SM
A
E(
4,
2.
75

)
0.
08

4
SM

A
E(
8,
3)

0.
03

SM
A
E(
7,
3.
25

)
0.
12

SM
A
E(
2,
0.
5)

0.
20

SM
A
E(
9,
1.
75

)
0.
07

SM
A
E(
10

,1
.7
5)

0.
07

5
SM

A
C
(2
,8
)

0.
03

SM
A
E(
15

,0
.7
5)

0.
12

SM
A
E(
2,
0.
75

)
0.
18

SM
A
E(
13

,4
.5
)

0.
07

SM
A
E(
3,
3)

0.
07

6
SM

A
C
(3
,9
)

0.
03

SM
A
E(
8,
1.
75

)
0.
12

P-
SM

A
(4
)

0.
17

SM
A
E(
12

,1
.5
)

0.
07

SM
A
E(
3,
3.
25

)
0.
07

7
SM

A
E(
7,
5)

0.
03

SM
A
E(
11

,1
)

0.
11

P-
SM

A
(3
)

0.
17

SM
A
E(
12

,0
.2
5)

0.
06

SM
A
E(
4,
2.
5)

0.
06

8
SM

A
C
(3
,8
)

0.
02

SM
A
C
(2
,1
2)

0.
11

SM
A
E(
3,
0.
75

)
0.
17

SM
A
E(
15

,1
.5
)

0.
06

SM
A
C
(3
,9
)

0.
06

9
SM

A
E(
8,
3.
25

)
0.
02

SM
A
E(
6,
2.
25

)
0.
11

SM
A
E(
3,
0.
5)

0.
17

SM
A
E(
11

,0
.5
)

0.
06

M
O
M
(6
)

0.
06

10
SM

A
E(
6,
4.
25

)
0.
02

SM
A
E(
7,
2)

0.
11

SM
A
E(
3,
1.
25

)
0.
16

SM
A
E(
14

,3
.2
5)

0.
06

SM
A
E(
3,
2.
5)

0.
06

Tr
ad
in
g
at
th
e
da
ily

fr
eq
ue
nc
y

1
SM

A
E(
22

0,
3.
25

)
0.
08

SM
A
E(
22

0,
2)

0.
21

SM
A
E(
30

,0
.5
)

1.
00

SM
A
E(
16

0,
3.
5)

0.
17

SM
A
E(
11

0,
0.
5)

0.
24

2
SM

A
E(
20

0,
3.
75

)
0.
08

SM
A
E(
21

0,
2.
25

)
0.
21

SM
A
E(
30

,1
)

0.
99

SM
A
E(
22

0,
3.
5)

0.
16

SM
A
E(
11

0,
0.
25

)
0.
23

3
SM

A
E(
21

0,
3.
5)

0.
07

SM
A
E(
22

0,
3)

0.
20

SM
A
E(
30

,0
.2
5)

0.
98

SM
A
E(
22

0,
3.
75

)
0.
16

SM
A
E(
12

0,
0.
5)

0.
23

4
SM

A
E(
22

0,
3.
5)

0.
07

SM
A
E(
20

0,
2.
75

)
0.
20

SM
A
E(
30

,1
.2
5)

0.
96

SM
A
E(
25

0,
1.
75

)
0.
16

SM
A
E(
12

0,
0.
75

)
0.
22

5
SM

A
E(
19

0,
3.
75

)
0.
07

SM
A
E(
21

0,
2.
5)

0.
20

SM
A
E(
12

,1
)

0.
96

SM
A
E(
23

0,
3.
75

)
0.
15

SM
A
E(
11

0,
0.
75

)
0.
21

6
SM

A
E(
19

0,
4)

0.
07

SM
A
E(
20

0,
2.
5)

0.
20

SM
A
E(
20

,0
.2
5)

0.
96

SM
A
E(
15

0,
4)

0.
15

SM
A
E(
10

0,
0.
25

)
0.
21

7
SM

A
E(
21

0,
3.
25

)
0.
07

SM
A
E(
19

0,
2.
25

)
0.
20

SM
A
E(
15

,1
)

0.
96

SM
A
E(
15

0,
4.
5)

0.
15

P-
SM

A
(1
10

)
0.
21

8
SM

A
E(
21

0,
3.
75

)
0.
07

SM
A
E(
21

0,
3)

0.
20

SM
A
E(
20

,0
.5
)

0.
95

SM
A
E(
22

0,
4)

0.
15

SM
A
E(
11

0,
1)

0.
20

9
SM

A
E(
16

0,
2.
75

)
0.
07

SM
A
E(
21

0,
2)

0.
20

SM
A
E(
20

,1
)

0.
94

SM
A
E(
21

0,
4.
25

)
0.
15

SM
A
C
(3
,1
00

)
0.
20

10
SM

A
E(
20

0,
4)

0.
06

SM
A
E(
15

0,
3.
5)

0.
20

SM
A
E(
13

,1
)

0.
94

SM
A
E(
23

0,
3.
5)

0.
15

SM
A
E(
12

0,
1)

0.
20

N
o
te
s

�
=

S
R
M

A
−

S
R
B
H

w
h
er
e
S
R
M

A
an

d
S
R
B
H

ar
e
th

e
Sh

ar
p
e
ra
ti
o
s
o
f
th

e
m
o
vi
n
g
av

er
ag

e
st
ra
te
g
y
an

d
th

e
b
u
y-
an

d
-h
o
ld

st
ra
te
g
y

re
sp

ec
ti
ve

ly
.T

h
e
h
is
to

ri
ca

lp
er
io
d
is
fr
o
m

Ja
n
u
ar
y
19

44
to

D
ec

em
b
er

20
15

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



228 V. Zakamulin

The reader is reminded that in our tests we always take into account transac-
tion costs. The results on the best trading strategy in a back test in the absence
of transaction costs are completely different. In particular, with daily trading
without transaction costs, for virtually all stock market indices the MOM(2)
strategy is the best trading strategy in a back test. Note that this strategy con-
sists in buying the stocks when the daily price change is positive, and selling
the stocks otherwise; this strategy exploits a very short-term momentum. For
all stock market indices but the DJIA index, Fig. 10.1 plots the rolling perfor-
mance (in the absence of transaction costs) of the MOM(2) strategy over the
period from January 1927 to December 2015. The graphs in this plot sug-
gest that the outperformance of this strategy was positive and increasing over
the period from the early 1940s to the early 1970s. Afterwards, the outper-
formance delivered by the MOM(2) strategy was decreasing. This very short-
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Fig. 10.1 Rolling 10-year outperformance produced by the MOM(2) strategy over the
period from January 1927 to December 2015. The first point in the graph gives the out-
performance over the first 10-year period from January 1927 to December 1936. The
returns to the MOM(2) strategy are simulated assuming daily trading without transac-
tion costs. Outperformance is measured by � = SRMA − SRBH where SRMA and SRBH

are the Sharpe ratios of the moving average strategy and the buy-and-hold strategy
respectively
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term momentum in stock prices was especially strong in small stocks over the
period from the early 1960s to the early 2000s. From about the mid-2000s
theMOM(2) strategy started to underperform the buy-and-hold strategy.This
fact suggests that the very short-term momentum in daily stock prices ceased
to exist and was replaced by a very short-term mean-reversion.

10.2.3 Forward-Testing Trading Rules

The initial in-sample period is from January 1929 to December 1943. Con-
sequently, the out-of-sample period is from January 1944 to December 2015.
Table 10.2 reports the outperformance delivered by the moving average trad-
ing strategies in out-of-sample tests with monthly and daily trading. Our first
observation is that regardless of the data frequency the moving average trading
rules underperform the buy-and-hold strategy in trading the DJIA index and
the growth stock index. This finding suggests that the moving average rules do
not work in some stock markets. Our second observation is that the moving
average trading rules statistically significantly outperform the buy-and-hold
strategy in trading the small stocks. Daily trading the small stocks produces
a much greater outperformance than monthly trading. Specifically, with daily
trading the outperformance is from 4 to 7 times higher than that with monthly
trading. Our third observation is that in trading the large stocks the outper-
formance is positive but is not statistically significant. Daily trading the large
stocks has no advantages compared with monthly trading. These results for
trading the large stocks agree very well with the results for trading the S&P
Composite index. Our last observation is that in trading the value stocks some
rules deliver a positive outperformance, but this outperformance is not statisti-
cally significant. The results for these stocks seem to suggest that daily trading
has a small advantage compared with monthly trading.

Comparing the results of the forward tests with those of the back tests, we
can note some similarities. Specifically, in trading the DJIA index the outper-
formance delivered by the best trading rules in a back test is marginal; in a
forward test themoving average rules underperform the buy-and-hold strategy.
In back tests, daily trading the small stocks produces significantly higher out-
performance than monthly trading. Similarly, in forward tests, daily trading
the small stocks produces significantly higher outperformance than monthly
trading. Apparently, daily trading the small stocks was advantageous because
the moving average rules exploited a strong short-term momentum existed in
this market.
To gain further insights into the properties of the moving average trading

strategy, we analyze the out-of-sample performance of the combined moving

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



230 V. Zakamulin

Table 10.2 Outperformance delivered by themoving average trading strategies in out-
of-sample tests

Moving average strategy

Stock index Statistics MOM P-SMA SMAC SMAE COMBI
Trading at the monthly frequency

DJIA Outperformance −0.15 −0.05 −0.09 −0.08 −0.07
P-value 0.96 0.73 0.84 0.84 0.80

Large stocks Outperformance 0.04 0.07 0.02 0.06 0.01
P-value 0.37 0.23 0.44 0.26 0.47

Small stocks Outperformance 0.11 0.20 0.12 0.11 0.10
P-value 0.10 0.01 0.10 0.09 0.10

Growth stocks Outperformance −0.04 −0.00 −0.01 −0.02 −0.01
P-value 0.68 0.53 0.54 0.61 0.58

Value stocks Outperformance −0.12 −0.08 −0.04 0.03 0.03
P-value 0.91 0.80 0.69 0.39 0.38

Trading at the daily frequency
DJIA Outperformance −0.28 −0.05 −0.05 −0.03 −0.03

P-value 1.00 0.71 0.71 0.62 0.62
Large stocks Outperformance −0.01 0.04 0.02 0.05 0.05

P-value 0.53 0.33 0.41 0.30 0.30
Small stocks Outperformance 0.74 0.84 0.84 0.86 0.86

P-value 0.00 0.00 0.00 0.00 0.00
Growth stocks Outperformance −0.04 −0.02 −0.02 −0.01 −0.05

P-value 0.68 0.57 0.59 0.54 0.68
Value stocks Outperformance −0.06 0.06 0.02 0.10 0.08

P-value 0.74 0.27 0.43 0.17 0.21

Notes BH denotes the buy-and-hold strategy, whereas COMBI denotes the ‘‘combined’’
moving average trading strategywhere at eachmonth-end the best trading strategy in a
back test is selected. The notations for the other trading strategies are self-explanatory.
The out-of-sample period from January 1944 to December 2015. Outperformance is
measured by � = SRMA − SRBH where SRMA and SRBH are the Sharpe ratios of the
moving average strategy and the buy-and-hold strategy respectively. Bold text indicates
the outperformance which is statistically significant at the 10% level

average trading strategy and the performance of the corresponding buy-and-
hold strategy over bull and bear markets. The bull and bear markets are deter-
mined using the prices of the S&P Composite index. For each stock market
index, Table 10.3 reports the descriptive statistics of the buy-and-hold strategy
and the moving average trading strategy over bull and bear markets. The mov-
ing average strategy is simulated assuming monthly trading. The descriptive
statistics include the mean and standard deviation of returns (in annualized
terms), as well as the Sharpe ratios over the bull markets. The Sharpe ratios
over the bear markets are not reported, because when the mean excess return
is negative, the value of the Sharpe ratio is not reliable and hard to interpret.
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Table 10.3 Descriptive statistics of the buy-and-hold strategy and the moving average
trading strategy over bull and bear markets

Bull markets Bear markets

Stock index Statistics BH MA BH MA

DJIA Mean returns % 22.79 15.77 −18.56 −8.98
Std. deviation % 12.54 10.53 14.34 10.69
Sharpe ratio 1.53 1.15

Large stocks Mean returns % 23.84 16.71 −21.47 −6.94
Std. deviation % 12.33 10.74 14.15 9.46
Sharpe ratio 1.64 1.21

Small stocks Mean returns % 29.53 21.98 −25.30 −7.84
Std. deviation % 18.91 15.71 20.63 11.89
Sharpe ratio 1.37 1.16

Growth stocks Mean returns % 24.51 17.30 −23.96 −10.81
Std. deviation % 13.87 12.15 16.29 10.78
Sharpe ratio 1.50 1.12

Value stocks Mean returns % 29.33 19.85 −19.62 −5.16
Std. deviation % 16.11 13.32 17.72 10.08
Sharpe ratio 1.59 1.21

Notes BH and MA denote the buy-and-hold strategy and the moving average trading
strategy respectively. Mean returns and standard deviations are annualized. Descriptive
statistics are reported for the out-of-sample period from January 1944 to December
2015

Observe that, for each stock market index, over bull markets the buy-and-
hold strategy outperforms themoving average trading strategy. Specifically, over
bull markets the buy-and-hold strategy has both higher mean return and stan-
dard deviation compared to themoving average strategy. At the same time, over
bull markets the buy-and-hold strategy has better risk-adjusted performance
than the moving average strategy. In contrast, over bear markets the moving
average trading strategy has better tradeoff between the risk and return than
that of the buy-and-hold strategy. In particular, over bear markets the moving
average strategy has substantially higher mean return (yet it is negative) with
lower standard deviation compared to the buy-and-hold strategy. That is, even
though in some stock markets the moving average strategy underperforms its
passive counterpart on a risk-adjusted basis, in each stock market the prop-
erties of the moving average strategy resemble the properties of the portfolio
insurance strategy which partially protects investors from losses during bear
markets.
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Finally in this section we would like to provide some words of caution
regarding the superior performance of the moving average strategy in trad-
ing the small stocks. The first problem with trading the small stocks is that
the small stocks are much less liquid as compared to the large stocks. As a
result, the transaction costs in trading the small stocks are larger than those
in trading the large stocks. In our simulations we used the same amount of
transaction costs in each stock market. Therefore in our forward tests the out-
performance produced by the moving average strategy in trading the small
stocks is upward-biased. The second and much more serious problem in trad-
ing the small stocks is that the moving average strategy seems to have taken
advantage of the existed strong short-term momentum in this market over the
period from the early 1960 to the early 2000s. This short-term momentum
ceased to exist and, consequently, the moving average strategy started to un-
derperform the buy-and-hold strategy from the mid-2000s. Figure 10.2 plots
the rolling outperformance delivered by the moving average strategy in daily
trading the small stocks. The plot of the rolling out-of-sample outperformance
of the moving average strategy resemble the plot of the rolling in-sample out-
performance of the MOM(2) strategy depicted in Fig. 10.1. Since the moving
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Fig. 10.2 Rolling 10-year outperformance in daily trading small stocks produced by the
moving average strategy simulated out-of-sample over the period from January 1944
to December 2015. Outperformance is measured by � = SRMA − SRBH where SRMA

and SRBH are the Sharpe ratios of the moving average strategy and the buy-and-hold
strategy respectively
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average strategy underperformed its passive counterpart over the course of the
last decade, the chances that the moving average strategy will outperform the
buy-and-hold strategy in the near future are very small in our opinion.

10.3 Bond Markets

10.3.1 Data

In this study, we use data on two bond market indices and the risk-free rate
of return. These two bond market indices are the long-term and intermediate-
termUS government bond indices. Our sample period begins in January 1926
and ends in December 2011 (86 full years), giving a total of 1032 monthly
observations. The bond data are from the Ibbotson SBBI 2012 Classic Year-
book. We use both the capital gain returns and total returns on long-term and
intermediate-term government bonds. The trading signals are computed using
bond index prices not adjusted for dividends. The risk-free rate of return is
also from the Ibbotson SBBI 2012 Classic Yearbook. In particular, the risk-free
rate of return for our sample period equals to 1-month Treasury Bill rate from
Ibbotson and Associates Inc.

10.3.2 Bull and Bear Market Cycles in Bond Markets

Before testing the performance of the moving average strategies in the bond
markets, it is useful to analyze the dynamics of the bull and bear mar-
ket cycles in these markets. Figure 10.3, upper panel, plots the yield on
the long-term US government bonds4 over the period from January 1926
to December 2011, whereas the lower panel plots the natural log of the
long-term government bond index over the same period. Shaded areas in
the lower panel indicate the bear market phases. These bull and bear mar-
ket phases are detected using the same algorithm as that used to detect the bull
and bear market phases in the S&P Composite index.
The bull and bear markets depicted in Fig. 10.3, lower panel, are known as

“primary markets”; the length of these markets generally lasts from one to five
years in duration. Besides the primary market trends, one can easily observe
the long-term trends known as “secular markets” or trends. A secular trend,
that lasts from one to three decades, holds within its parameters many primary
trends. For example, a secular bull market has bear market periods within it,

4The data are provided by Robert Shiller http://www.econ.yale.edu/~shiller/data.htm. Alternatively, these
data can also be downloaded from https://www.measuringworth.com.
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Fig. 10.3 The upper panel plots the yield on the long-term US government bonds over
the period from January 1926 to December 2011, whereas the lower panel plots the
natural log of the long-term government bond index over the same period. Shaded
areas in the lower panel indicate the bear market phases

but it does not reverse the overlying trend of upward asset values. Similarly, a
secular bear market has bull market periods within it.

Our historical sample contains two secular bull markets and one secular bear
market.The secular bull markets cover the period from 1926 to the mid-1940s
and the period from 1982 to 2011. These secular bull markets are associated
with two long-term periods of decreasing yield on the long-term government
bonds. The secular bear market spans the period from the mid-1940s to 1982
and is associated with a long-term period of increasing yield on the long-term
government bonds. A visual investigation of the bull-bear cycles in the bond
market suggests that the parameters and dynamics of these bull-bear cycles
vary across secular markets. Specifically, a secular bull market is characterized
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by long bull and short bear primary trends. In contrast, a secular bear market
is characterized by short bull and long bear primary trends. This knowledge
suggests that we should expect that the performance of the moving average
rules varies across secular bull and bear markets.

10.3.3 Back-Testing Trading Rules

For both intermediate- and long-term bonds, Table 10.4 shows the top 10
best trading strategies in a back test over the total period from January 1929
to December 2011, as well as over the two sub-periods: the first one is from
January 1944 to December 1982 and the second one is from January 1983
to December 2011. We remind the reader that the first sub-period spans a
secular bear market in bonds, whereas the second sub-period covers a secular
bull market in bonds. The results reported in this table suggest the follow-
ing observations. Over the whole in-sample period the best trading strategies

Table 10.4 Top 10 best trading strategies in a back test

Rank Strategy � Strategy � Strategy �

1929–2011 1944–1982 1983–2011
Long-term bonds
1 SMAC(11,16) 0.08 SMAE(23,0.5) 0.40 SMAE(3,3.75) −0.10
2 SMAC(11,15) 0.05 MOM(15) 0.40 MOM(13) −0.11
3 MOM(13) 0.05 MOM(16) 0.39 SMAE(2,3.25) −0.11
4 SMAE(4,5) 0.05 SMAE(22,0.75) 0.37 SMAE(3,5) −0.12
5 SMAC(11,13) 0.03 MOM(18) 0.37 SMAE(4,5) −0.12
6 SMAC(10,15) 0.03 SMAE(23,0.75) 0.37 SMAE(6,0.25) −0.13
7 SMAC(10,16) 0.03 SMAE(22,0.5) 0.36 SMAC(11,15) −0.13
8 SMAE(23,4.75) 0.03 SMAC(9,17) 0.36 SMAE(4,3.5) −0.13
9 SMAC(9,17) 0.03 SMAE(24,0.5) 0.36 SMAC(2,6) −0.13
10 MOM(15) 0.03 SMAC(4,20) 0.36 SMAE(4,2.5) −0.13
Intermediate-term bonds
1 SMAE(4,0.25) 0.13 MOM(15) 0.24 SMAE(2,2) 0.00
2 SMAC(8,16) 0.12 SMAE(4,0.25) 0.24 SMAE(2,2.25) 0.00
3 SMAC(8,15) 0.12 SMAC(7,20) 0.21 SMAE(2,2.5) 0.00
4 SMAE(2,1.75) 0.11 P-SMA(4) 0.21 SMAE(2,2.75) 0.00
5 P-SMA(5) 0.11 SMAC(11,17) 0.21 SMAE(2,3) 0.00
6 SMAC(8,19) 0.11 SMAC(10,18) 0.21 SMAE(2,3.25) 0.00
7 SMAC(8,17) 0.11 SMAE(2,1.5) 0.20 SMAE(2,3.5) 0.00
8 SMAC(8,18) 0.11 SMAE(2,1.75) 0.20 SMAE(2,3.75) 0.00
9 SMAC(9,15) 0.10 SMAC(5,16) 0.20 SMAE(2,4) 0.00
10 SMAC(7,20) 0.10 P-SMA(5) 0.20 SMAE(2,4.25) 0.00

Notes � = SRMA − SRBH where SRMA and SRBH are the Sharpe ratios of the moving
average strategy and the buy-and-hold strategy respectively

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



236 V. Zakamulin

outperform the buy-and-hold strategy on a risk-adjusted basis. However, the
results for each sub-period advocate that the best trading strategies in a back
test outperform the buy-and-hold strategy over the secular bear market only. In
contrast, over the secular bull market in bonds, even the best trading strategies
are not able to outperform the buy-and-hold strategy. In trading the long-term
bonds, even the best trading strategy in a back test significantly underperforms
the buy-and-hold strategy over the secular bull market in bonds.

10.3.4 Forward-Testing Trading Rules

The initial in-sample period in forward tests is from January 1929 toDecember
1943. Consequently, the out-of-sample period is from January 1944 to De-
cember 2011.Table 10.5 reports the (out-of-sample) outperformance delivered
by the moving average strategies in trading the long- and intermediate-term
bonds. The main conclusion that can be drawn from these results is clear-cut:
the moving average rules do not outperform the buy-and-hold strategy in trad-
ing bonds. Specifically, for themajority of rules the outperformance is negative.
For some rules the estimate for the outperformance is positive, but it is neither
economically nor statistically significant. Besides, the outperformance is very
uneven in time; the outperformance is positive mainly over the period that
spans the secular bear market in bonds, see Fig. 10.4 for an illustration.

Whereas in stockmarkets themoving average rules provide significant down-
side protection (the maximum drawdown is reduced by approximately 50%),
in bond markets the downside protection, as measured by the reduction in
the maximum drawdown, amounts to only 25% which corresponds to the
reduction in the mean excess returns. The fact that the dynamics of the bull-
bear cycles in bond markets is changing over time suggests using walk-forward
tests instead of forward tests. To test whether the outperformance is better in
walk-forward tests, we simulated the returns to the moving average rules over
the same out-of-sample period using a rolling in-sample window of 10 years.
The results of these walk-forward tests are virtually the same as those of the for-
ward tests (in order to save space, these results are not reported). Consequently,
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Table 10.5 Descriptive statistics of the buy-and-hold strategy and the out-of-sample
performance of the moving average trading strategies

Moving average strategy

Statistics BH MOM P-SMA SMAC SMAE COMBI

Long-term bonds
Mean returns % 6.28 5.83 5.37 5.81 5.37 5.64
Std. deviation % 9.08 6.50 6.55 6.56 6.37 6.39
Minimum return % −11.24 −11.24 −11.24 −11.24 −11.24 −11.24
Maximum return % 15.23 14.43 11.45 14.43 11.45 14.43
Skewness 0.58 0.69 0.17 0.67 0.21 0.65
Kurtosis 4.12 10.75 7.60 10.03 7.95 10.92
Average drawdown % 3.98 3.07 2.71 3.24 2.94 3.30
Average max drawdown % 13.45 9.55 8.76 9.54 8.78 9.21
Maximum drawdown % 20.97 15.21 24.15 14.40 15.60 14.40
Outperformance 0.02 −0.05 0.02 −0.04 −0.00
P-value 0.41 0.69 0.42 0.68 0.52
Rolling 5-year Win % 31.97 54.95 35.80 34.08 31.44
Rolling 10-year Win % 44.48 64.13 37.30 49.35 29.27
Intermediate-term bonds
Mean returns % 5.76 5.05 5.35 5.07 5.18 5.12
Std. deviation % 4.77 3.37 3.41 3.41 3.41 3.43
Minimum return % −6.41 −6.51 −3.87 −3.87 −3.87 −3.87
Maximum return % 11.98 5.31 6.14 5.31 6.14 6.14
Skewness 0.88 −0.07 0.68 0.44 0.59 0.60
Kurtosis 7.76 6.96 5.91 4.75 5.95 5.75
Average drawdown % 1.64 1.46 1.23 1.43 1.42 1.38
Average max drawdown % 5.46 4.57 4.13 4.64 4.23 4.21
Maximum drawdown % 8.89 6.51 6.59 7.95 6.21 6.48
Outperformance −0.07 0.02 −0.06 −0.03 −0.05
P-value 0.79 0.40 0.76 0.66 0.74
Rolling 5-year Win % 27.34 41.88 35.40 25.63 24.70
Rolling 10-year Win % 18.94 45.62 39.02 26.54 22.67

Notes BH denotes the buy-and-hold strategy, whereas COMBI denotes the ‘‘combined’’
moving average trading strategywhere at eachmonth-end the best trading strategy in a
back test is selected. The notations for the other trading strategies are self-explanatory.
Outperformance is measured by � = SRMA − SRBH where SRMA and SRBH are the
Sharpe ratios of themoving average strategy and the buy-and-hold strategy respectively

even though the dynamics of the bull-bear cycles in bond markets is changing
over time, walk-forward tests are not able to accommodate the parameters of
moving average rules to the changing dynamics.
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Fig. 10.4 Rolling 10-year outperformance in trading the long-term bonds produced
by the moving average strategy simulated out-of-sample over the period from January
1944 toDecember 2011.Outperformance ismeasured by� = SRMA−SRBH where SRMA

and SRBH are the Sharpe ratios of the moving average strategy and the buy-and-hold
strategy respectively

10.4 Currency Markets

10.4.1 Exchange Rate Regimes

An exchange rate (a.k.a. a foreign-exchange rate, Forex rate, or FX rate) between
two currencies is the rate at which one currency is exchanged for another
currency. In simple terms, an exchange rate is the amount of a currency that
one needs to pay in order to buy one unit of another currency.

An exchange-rate regime is the way a country’s monetary authority, gener-
ally the central bank, manages its currency in relation to other currencies and
the foreign exchange market. Before World War I, most countries adhered to
the “gold standard”. The countries that used the gold standard were commit-
ted to exchange their national currency in a fixed amount of gold. The gold
standard creates a “fixed exchange” regime causing prices in different countries
to move together, and hence create price stability. However, the gold standard
had an adverse side-effect. Specifically, it put restrictions on a country’s mon-
etary policy. Without an increase in the amount of gold held as reserve in the
country, government is not able to increase the money supply. An important
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implication is that a balance-of-payment deficit translates into a reduction in
the gold reserve, which again translates into a reduction in the money supply
(contractive monetary policy). In other words, if a country has a deficit in the
balance-of-payments it must use a deflationary (change in the domestic price
level) policy instead of a devaluation (change in the exchange rate). Countries
with a balance-of-payment surplus could either do nothing or let the money
supply increase, but then with the danger of creating inflation. This difference
between countries with a deficit or surplus in the balance-of-payment creates
an asymmetry in how the gold standard operates.

Most countries suspended the gold standard by the outbreak ofWorldWar I
when the governments were in need of creating inflation in order to finance the
war. AfterWorldWar I, the gold standard was re-established.The classical gold
standard ceased to exist because of theGreat Depression and subsequentWorld
War II. After WorldWar II, a system similar to a gold standard and sometimes
described as a “gold exchange standard” was established by the BrettonWoods
Agreements. From 1946 to the early 1970s, the Bretton Woods system made
fixed currencies the norm.The BrettonWoods system rested on both gold and
theU.S. dollar. In principle, the system replaced the gold standardwith theU.S.
dollar. The countries, that were members of the Bretton Woods Agreements,
agreed to redeem their currency for U.S. dollars, and the U.S. committed to
exchange dollars for a fixed amount of gold.

Unfortunately, fixed exchange rates work satisfactory as long as the coun-
tries maintain their competitiveness and adhere to similar economic poli-
cies. Eventually the U.S. lost its competitiveness against Europe and Japan
and the U.S. dollar became overvalued. The U.S. unilaterally terminated
convertibility of theU.S. dollar to gold in 1971, effectively bringing theBretton
Woods system to an end. After that, “floating rates” are the most common ex-
change rate regime. Under the floating rates, a currency exchange rate depends
on the supply and demand for this currency.

10.4.2 Data and Methodology

We consider a trader which home country is the U.S. Consequently, our con-
vention is that we quote exchange rates as the price in U.S. dollars per unit of
foreign currency (FC). That is, we quote the rate as USD/FC.
The exchange market consists of two core segments: the spot exchange

market and the futures exchange market. The spot exchange market is the
exchange market for payment and delivery of foreign currency “today”. The
futures exchange market is the exchange market for payment and delivery of
foreign currency at some “future” date.
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Our dataset consists of six spot exchange rates and seven 1- or 3-month
government yields.5 All data span the period from January 1971 to December
2015. Specifically, we obtain month-end exchange rates for Sweden, Japan,
South Africa, Canada, the United Kingdom (U.K.), and Australia. To check
whether there is any advantage in trading daily rather than monthly, we obtain
day-end exchange rates for the U.K. and Australia. These data are obtained
from the Federal Reserve Economic Data (FRED), a database maintained by
the Research division of the Federal Reserve Bank of St. Louis.6

Under our convention, the trader buys foreign currency in the spot market.7

The moving average trading rules are used to generate Buy and Sell signals.
When the trading signal is Buy, the trader buys the foreign currency and
deposits it in a foreign bank to earn the risk-free rate. When a Sell signal is
generated, the trader converts the foreign currency to U.S. dollars and deposits
them in a home bank to earn the risk-free rate.The risk-free rate of return in the
U.S. equals to 1-monthTreasury Bill rate provided by Ibbotson and Associates
Inc. The risk-free rates of return in the six other countries equal to 1-month
(or 3-months)Treasury Bill rates provided by the central banks in each country.

More formally, the currency capital gain return is computed as

rt = Xt − Xt−1

Xt−1
,

where Xt denotes the end of period t exchange rate. The time series of {Xt }
is used to compute moving averages and generate trading signals. The total
return on the foreign currency is the sum of the capital gain return and the
foreign risk-free rate of return:

Rt = rt + r∗
f,t ,

where r∗
f,t denotes the foreign risk-free rate of return. The return on the U.S.

dollar equals the domestic risk-free rate of return r f,t .
Park and Irwin (2007) review, among other things, 38 studies where the

researchers tested the profitability of technical trading strategies in currency
markets. The great majority of these studies find profitability of technical trad-
ing strategies. However, several studies conducted in the early 2000s seem to
suggest that technical trading profits have declined or disappeared since the
mid-1990s (see Park and Irwin 2007, and references therein). The researchers

5These yields are proxies for the risk-free interest rates for the U.S. and six other countries.
6https://fred.stlouisfed.org/.
7A similar convention is used in, for example, Okunev and White (2003) and Kilgallen (2012).
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jumped to the conclusion that the currency markets gradually became “effi-
cient” which implies that it is not possible to “beat the market” consistently
using the information from the past exchange rates. However, in our opinion
this conclusion was premature.This is because in periods where the U.S. dollar
strengthens (bulls market in the U.S. dollar), the market timing strategies do
not work. The fact is that since the early 1970s the U.S. dollar tends to follow
long-term (or secular) cycles lasting 5–10 years. The absence of profitability of
technical trading rules over the period from the mid-1990s to the early 2000s
can be explained by the fact that over this historical period the U.S. dollar was
strengthening.

For the sake of illustration, Fig. 10.5 plots a weighted average of the for-
eign exchange value of the U.S. dollar against a subset of the broad index
currencies.8 These index currencies include the Euro Area, Canada, Japan, the
United Kingdom, Switzerland, Australia, and Sweden. Shaded areas in this
plot indicate the bear market phases. These bull and bear market phases are
detected using the same algorithm as that used to detect the bull and bear
market phases in the S&P Composite index. The graph in this plot advocates
that there were two secular bull markets in the U.S. dollar. The first one lasted
between 1980 and 1985, whereas the second one lasted between 1995 and
2003. The first secular bull market was induced by increasing interest rates
in the U.S. (see the previous section on the bull and bear markets in bonds)
and, as a consequence, high demand for the U.S. dollar. The second secular
bull market covers the period of the Dot-Com bubble when the Internet and
similar technology companies experienced meteoric rises in their stock prices
and attracted substantial international capital flows.

It should be noted, however, that Fig. 10.5 plots a weighted average value
of the U.S. dollar. Individual exchange rates may have own particular bull and
bear cycles. Therefore when one tests the profitability of technical trading rules
in some specific currency market, it makes sense to analyze the historical bull
and bear market phases in this currency before jumping to a conclusion on
whether technical trading rules work or do not work in this market.

10.4.3 Back-Testing Trading Rules

For each exchange rate, Table 10.6 shows the top 10 best (monthly) trad-
ing strategies in a back test over the period from January 1981 to December
2015. The results reported in this table suggest the following observation-
s. First, for each exchange rate the best trading strategies outperform the

8The data for this plot are also obtained from the FRED database.
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Fig. 10.5 A weighted average of the foreign exchange value of the U.S. dollar against
a subset of the broad index currencies. Shaded areas indicate the bear market phases

buy-and-hold strategy on a risk-adjusted basis. The outperformance is the
greatest in trading the US/Japan exchange rate and the lowest in trading the
US/SouthAfrica exchange rate. Second, for all exchange rates but theUS/South
Africa rate, the best trading strategies are based on exploiting a very short-term
momentum in monthly rate. Specifically, for virtually all exchange rates the
best trading strategies are either MOM(2) or SMAE(2,p) strategy. However,
some trading strategies use a relatively long size of the averaging window. For
example, in trading the US/Sweden exchange rate the familiar P-SMA(10)
strategy shows the third best performance. Our third and final observation
is that the SMAE(n, p) strategy is over-represented in the list of the top 10
strategies for all exchange rates.

For two exchange rates, Table 10.7 shows the top 10 best (daily) trading
strategies in a back test over the same period from January 1981 to Decem-
ber 2015. Rather surprisingly, with daily trading the performance of the best
trading strategies in a back test is significantly lower than that with monthly
trading. This is surprising because daily trading in stock market indices pro-
duces better performance in back-tests as compared with monthly trading.
The reasons for disadvantage of daily trading in currency markets lie in the
time-series properties of exchange rates. In particular, for exchange rates the
signal-to-noise ratio (see the preceding chapter for the definition of the signal-
to-noise ratio) is lower than that for stock market indices. This is because the
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Table 10.6 Top 10 best trading strategies in a back test with monthly trading

Rank Strategy � Strategy � Strategy �

US/Sweden US/Japan US/South Africa
1 MOM(2) 0.41 SMAE(2,3) 0.83 SMAE(6,5.5) 0.16
2 P-SMA(2) 0.41 SMAE(3,0.75) 0.77 SMAE(6,5.75) 0.16
3 SMAE(2,0.25) 0.37 SMAE(2,2.75) 0.76 SMAE(6,6) 0.16
4 P-SMA(10) 0.34 P-SMA(3) 0.75 SMAE(6,6.25) 0.16
5 SMAE(2,0.75) 0.34 SMAE(3,0.5) 0.74 SMAE(3,4.5) 0.16
6 SMAE(8,0.25) 0.33 SMAE(2,0.5) 0.73 SMAE(6,6.5) 0.16
7 SMAE(2,1.25) 0.33 SMAE(3,4.75) 0.72 SMAE(4,5.5) 0.15
8 SMAE(10,2) 0.32 SMAE(3,5) 0.72 SMAE(4,5.75) 0.15
9 SMAE(3,1.5) 0.32 SMAE(4,6) 0.72 SMAE(4,6) 0.15
10 SMAE(11,1.5) 0.32 SMAE(4,6.25) 0.72 SMAE(4,6.25) 0.15

US/Canada US/UK US/Australia
1 SMAE(2,1.5) 0.36 MOM(2) 0.45 MOM(2) 0.56
2 SMAE(4,2.75) 0.35 P-SMA(2) 0.45 P-SMA(2) 0.56
3 SMAE(4,3) 0.35 SMAE(2,1) 0.44 SMAE(2,0.25) 0.53
4 SMAE(2,1.25) 0.35 SMAE(2,0.25) 0.42 SMAE(2,0.5) 0.47
5 SMAE(7,4) 0.34 SMAE(2,2.25) 0.41 SMAE(3,0.25) 0.41
6 SMAE(8,4) 0.34 SMAE(5,0.5) 0.40 SMAE(6,3.75) 0.40
7 P-SMA(7) 0.34 P-SMA(3) 0.40 P-SMA(9) 0.40
8 SMAE(7,0.25) 0.33 SMAE(2,2) 0.40 P-SMA(8) 0.39
9 SMAE(6,0.75) 0.32 SMAE(8,2) 0.39 SMAE(3,0.5) 0.39
10 SMAE(5,1.75) 0.32 SMAE(4,2.25) 0.39 SMAE(8,0.25) 0.39

Notes � = SRMA − SRBH where SRMA and SRBH are the Sharpe ratios of the moving
average strategy and the buy-and-hold strategy respectively

majority of exchange rates go sideways over a long run whereas stock market
indices go up. In addition, while daily exchange rates exhibit very little or no
persistence, monthly exchange rates show a high degree of persistence (see the
concluding remarks to this chapter).

10.4.4 Forward-Testing Trading Rules

In these forward tests the initial in-sample period is from January 1974 to
December 1983. Consequently, the out-of-sample period is from January
1984 to December 2015. Table 10.8 reports the outperformance delivered
by the moving average strategies in out-of-sample tests in currency trading.
For all exchange rates we simulate the out-of-sample returns to the moving
average strategies assuming monthly trading. For 2 out of 6 exchange rates we
also simulate the out-of-sample returns assuming daily trading. The results
of these forward tests suggest the following observations. First, for 5 out of
6 exchange rates, the moving average strategies statistically significantly out-
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Table 10.7 Top 10 best trading strategies in a back test with daily trading

Rank Strategy � Strategy �

US/UK US/Australia
1 SMAE(12,4.5) 0.31 SMAE(210,8.5) 0.26
2 SMAE(13,4.75) 0.31 SMAE(220,8) 0.26
3 SMAE(170,3.25) 0.26 SMAE(200,8.75) 0.26
4 SMAE(140,3.5) 0.26 SMAE(220,8.25) 0.26
5 SMAE(160,2.25) 0.26 SMAE(220,8.5) 0.25
6 SMAE(130,3.75) 0.26 SMAE(80,7) 0.25
7 SMAE(190,0.5) 0.26 SMAE(220,8.75) 0.25
8 SMAE(130,4.25) 0.26 SMAE(230,8.25) 0.25
9 SMAE(150,3.25) 0.26 SMAE(190,9.25) 0.25
10 SMAE(140,4.25) 0.26 SMAC(13,170) 0.25

Notes � = SRMA − SRBH where SRMA and SRBH are the Sharpe ratios of the moving
average strategy and the buy-and-hold strategy respectively

perform the buy-and-hold strategy in monthly trading. The best outperfor-
mance is achieved in trading the US/Japan exchange rate. Only in trading the
US/South Africa exchange rate the outperformance is close to zero. Second,
all moving average trading rules deliver about the same outperformance. That
is, regardless of the choice of a trading rule, the out-of-sample performance
of a moving average strategy remains virtually the same. Third, there is no
advantage in trading daily rather than monthly. Specifically, in daily trading
the outperformance is usually negative.
The analysis of the bull-bear markets in the US/Japan and US/South Africa

exchange rates allows us to understand the reason for very good profitability of
moving average rules in trading theUS/Japan exchange rate andpoor profitabil-
ity of these rules in trading the US/South Africa exchange rate. Figure 10.6,
left panel, plots the bull and bear market cycles in the US/Japan exchange rate,
whereas the right panel in this figure plots the bull and bear market cycles
in the US/South Africa exchange rate. Apparently, the moving average rules
did not work in trading the US/South Africa exchange rate because the South
African currency (South African Rand, ZAR) has been strengthening virtually
over the whole out-of-sample period except some short historical episodes. In
contrast, the moving average rules worked very well in trading the US/Japan
exchange rate because the Japanese currency (Japanese Yen, JPY) has been
weakening virtually over the whole out-of-sample period except some short
historical episodes.
To get deeper insights into the properties of the out-of-sample performance

of moving average trading rules in currency markets, Table 10.9 reports the
detailed descriptive statistics of the buy-and-hold strategy and the out-of-
sample performance of the moving average trading strategies in trading the

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



10 Trading in Other Financial Markets 245

Table 10.8 Outperformance delivered by themoving average trading strategies in out-
of-sample tests

Moving average strategy
FX Rate Statistics MOM P-SMA SMAC SMAE COMBI

Trading at the monthly frequency
US/Sweden Outperformance 0.40 0.40 0.40 0.34 0.35

P-value 0.00 0.00 0.00 0.00 0.00
US/Japan Outperformance 0.62 0.73 0.73 0.66 0.65

P-value 0.00 0.00 0.00 0.00 0.00
US/South Africa Outperformance −0.08 −0.03 −0.05 0.03 0.03

P-value 0.78 0.64 0.71 0.40 0.40
US/Canada Outperformance 0.15 0.28 0.23 0.19 0.20

P-value 0.18 0.02 0.04 0.14 0.12
US/UK Outperformance 0.32 0.32 0.32 0.23 0.31

P-value 0.01 0.01 0.01 0.06 0.02
US/Australia Outperformance 0.45 0.48 0.47 0.47 0.50

P-value 0.00 0.00 0.00 0.00 0.00
Trading at the daily frequency
US/UK Outperformance −0.04 −0.04 −0.02 −0.04 −0.02

P-value 0.89 0.89 0.78 0.86 0.70
US/Australia Outperformance 0.02 −0.03 0.03 −0.02 −0.01

P-value 0.31 0.78 0.22 0.69 0.65

Notes BH denotes the buy-and-hold strategy, whereas COMBI denotes the ‘‘combined’’
moving average trading strategywhere at eachmonth-end the best trading strategy in a
back test is selected. The notations for the other trading strategies are self-explanatory.
The out-of-sample period from January 1984 to December 2015. Outperformance is
measured by � = SRMA − SRBH where SRMA and SRBH are the Sharpe ratios of the
moving average strategy and the buy-and-hold strategy respectively. Bold text indicates
the outperformance which is statistically significant at the 10% level

US/Sweden exchange rate. Observe that the standard deviation of the mov-
ing average trading strategies is only a bit less than that of the buy-and-hold
strategy. However, the mean return to the moving average trading strategies is
substantially higher than that of the buy-and-hold strategy. The moving aver-
age strategies are substantially less risky when risk is measured by themaximum
drawdown(s). Therefore, in currency markets the moving average strategies are
“high returns, low risk” strategies. Even though the outperformance is statis-
tically significant, note that the outperformance is very uneven over time and
there is absolutely no guarantee that over a 5- to 10-year period the moving
average strategy outperforms its passive counterpart. To illustrate this feature
of outperformance, Fig. 10.7, bottom panel, plots the 5-year rolling outper-
formance delivered by the combined moving average strategy, whereas the top
panel in this figure plots the bull-bearmarkets in theUS/Sweden exchange rate.
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Fig. 10.6 Left panel plots the bull and bear market cycles in the US/Japan exchange
rate. Right panel plots the bull and bear market cycles in the US/South Africa exchange
rate. Shaded areas indicate the bear market phases

Table 10.9 Descriptive statistics of the buy-and-hold strategy and the out-of-sample
performance of the moving average trading strategies in trading the US/Sweden ex-
change rate

Moving average strategy
Statistics BH MOM P-SMA SMAC SMAE COMBI

Mean returns % 6.23 10.74 10.87 10.87 9.74 9.87
Std. deviation % 9.14 8.81 8.81 8.81 8.89 8.88
Minimum return % −6.84 −6.52 −6.52 −6.52 −7.28 −7.28
Maximum return % 12.73 12.73 12.53 12.53 12.53 12.53
Skewness 0.64 0.58 0.57 0.57 0.52 0.49
Kurtosis 2.01 1.97 1.90 1.90 1.98 1.98
Average drawdown % 6.79 3.07 3.00 3.00 3.56 3.33
Average max drawdown % 11.50 7.81 7.89 7.89 8.70 8.77
Maximum drawdown % 32.11 13.78 13.78 13.78 13.78 13.78
Outperformance 0.52 0.53 0.53 0.40 0.42
P-value 0.01 0.01 0.01 0.05 0.05
Rolling 5-year Win % 82.46 78.15 78.15 63.38 62.77
Rolling 10-year Win % 97.36 84.91 84.91 70.94 70.94

Notes BH denotes the buy-and-hold strategy, whereas COMBI denotes the ‘‘combined’’
moving average trading strategywhere at eachmonth-end the best trading strategy in a
back test is selected. The notations for the other trading strategies are self-explanatory.
Outperformance is measured by � = SRMA − SRBH where SRMA and SRBH are the
Sharpe ratios of themoving average strategy and the buy-and-hold strategy respectively

The graphs in this figure suggest that the moving average strategy outperforms
its passive counterpart only during bear markets.

As a final remark, it is worth noting the following. Neither in the stock nor
in the bond market the moving average strategy with short selling the financial
asset outperforms its counterpart where the trader switches to cash. Howev-
er, our (unreported) results suggest that in currency markets for all exchange
rates, but the US/South Africa exchange rate, the short selling strategy signifi-
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Fig. 10.7 Top panel plots the bull-bear markets in the US/Sweden exchange rate over
the period from 1984 to 2015. Shaded areas indicate the bear market phases. Bottom
panel plots the 5-year rolling outperformance delivered by the combined moving aver-
age strategy

cantly outperforms its counterpart in back-tests. In forward tests, on the other
hand, for all exchange rates, but the US/Japan exchange rate, the short selling
strategy only marginally outperforms its counterpart. Only for the US/Japan
exchange rate the short selling strategy significantly outperforms its counter-
part in forward-tests. However, this significant increase in outperformance is
not surprising given the fact that the Japanese currency has been weakening
virtually over the whole out-of-sample period and because the interest rate in
the U.S. has been higher than that in Japan. In the subsequent paragraph we
will elaborate more on the importance of these properties for the profitability
of currency trading strategies.
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In currency markets “short selling” a foreign currency means borrowing
money in foreign currency, exchanging them to domestic currency, with sub-
sequent saving in the domestic bank. This strategy is usually called a “currency
carry trade” which consists in borrowing a currency at a low interest rate to
finance the purchase of another currency earning a high interest rate. The idea
of carry trade is to try to generate profits by exchanging two currencies with
differing interest rates. In this regard, a currency carry trade can alternatively be
called an “interest arbitrage”. The practice of carry trade in currency markets
gained popularity in the 1990s when there were large interest rate differentials
between the economies in countries like Japan and the U.S. Specifically, at that
time, interest rates in Japan had dropped to nearly zero, while rates in the U.S.
were near 5% or above. A currency carry trade is risky because of the uncer-
tainty in the exchange rate. The trader can lose money if the foreign currency
appreciates. A moving average trading strategy can be used as an effective tool
to hedge the currency carry trade risk and protect the trader from losses.

10.5 Commodity Markets

10.5.1 Historical Background

In economics, a commodity is “a marketable item produced to satisfy wants
or needs”. By a commodity one usually means a raw material or primary
agricultural product that can be bought and sold. The price of a commodity
is subject to supply and demand and inflation.

Commodity markets existed even in early civilizations. The Chicago Board
of Trade (CBOT), established in the U.S. in 1848, is the first centralized
financial market for trading futures contracts on commodities. The first trad-
ed contracts included such agricultural commodities as wheat, corn, cattle, and
pigs. Since that time, the list of agricultural commodities has been consider-
able extended. Nowadays, besides various agricultural commodities, one can
trade in futures contracts on energy (examples are crude oil and natural gas),
metals (examples are copper and gold), raw materials (examples are timber and
rubber), and fertilizers.

Financial econometric literature documents that, whereas stock prices are
negatively correlated with inflation and interest rates (Fama 1981), commodity
prices, on the other hand, are positively correlated with inflation and interest
rates (Gorton and Rouwenhorst 2006; Kat and Oomen 2007). Commodity
prices are also negatively correlated with stock prices. Therefore, when stock
prices go down, commodity prices usually go up (Rogers 2007). To illustrate
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Fig. 10.8 Top panel plots the bull-bear cycles in the S&P 500 index over the period from
1971 to 2015. Bottom panel plots the bull-bear cycles in the Precious metals index over
the same period. Shaded areas indicate the bear market phases

this feature of stock and commodity prices, Fig. 10.8, top panel, plots the bull-
bear cycles in the S&P 500 index over the period from 1971 to 2015. The
bottom panel in this figure plots the bull-bear cycles in the Precious metals
index (gold, silver, and platinum) over the same period. The graphs in this
figure suggest that when the stock prices go sideways (as in the 1970s and
2000s), the prices of precious metals increase substantially. Commodities had
not been a popular asset class during the 1980s and 1990s. However, since the
early 2000s when both the stock prices and interest rates started to decline,
many investors have been attracted to commodities.

Investments in commodities often require a higher level of expertise to trade
specific commodity futures contracts. To facilitate investment in commodity
futures contracts, individual investors usually hire a CommodityTrading Advi-
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sor (CTA).There are three major investment styles employed by CTAs: techni-
cal, fundamental, and quantitative. According to various estimates, at least 2/3
of CTAs use technical analysis (trend following and momentum indicators) to
make investment decision.

10.5.2 Data and Methodology

The World Bank has compiled monthly data that go back to 1960 for spot
benchmark prices of a broad array of individual commodities and commod-
ity price indices.9 In our study we use commodity prices beginning from
January 1971. This is because during the period of the gold exchange stan-
dard some commodity prices (for example, crude oil prices) exhibited little
or no fluctuation. Only after the collapse of the Bretton Woods system and
the abolishment of the gold exchange standard, all commodity prices began to
fluctuate significantly. The abandonment of the gold standard made it possible
for governments to use the banking system as a means to an unlimited expan-
sion of money and credit. During the gold standard era, periods of inflation
alternated with periods of deflation. On average, the prices remained on about
the same level. The abandonment of the gold standard created a constant infla-
tion without deflationary breaks. Even though there are significant differences
between different commodities, since the early 1970s the average commodity
prices have been steadily increasing.

Because of the big diversity of individual commodities, instead of testing the
performance of moving average trading rules in each individual commodity
market, we restrict our attention to testing these rules in 9 broad commodity
price indices. The list of these indices and their components is presented in
Table 10.10.

Even though we use commodity spot prices, we assume that when the trader
buys and holds a commodity index, there are no costs of carry.That is, there are
no costs of storing a physical commodity. This is equivalent of assuming that
the trader buys short-maturity commodity futures contracts.10 All commodity
index prices are given in U.S. dollars. This also means that we consider the
trader whose home country is the U.S. When the trader switches to cash, the
return on cash equals to 1-month Treasury Bill rate provided by Ibbotson and
Associates Inc.

9See http://www.worldbank.org/en/research/commodity-markets.
10The futures price converges to the spot price as the delivery date of the contract approaches, see any
textbook on derivative securities, for example, Hull (2014).

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ

http://www.worldbank.org/en/research/commodity-markets


10 Trading in Other Financial Markets 251

Table 10.10 List of commodity price indices and their components

# Commodity index Components

1 Energy Coal, Crude oil, and Natural gas
2 Beverages Cocoa, Coffee, and Tea
3 Oils & Meals Coconut oil, Fishmeal, Groundnuts, Palm oil, Soybeans, etc
4 Grains Barley, Maize, Rice, Sorghum, and Wheat
5 Timber Logs, Plywood, Sawnwood, and Woodpulp
6 Raw Materials Cotton and Rubber
7 Fertilizers DAP, Phosphate rock, Potassium chloride, TSP, and Urea
8 Base Metals Aluminum, Copper, Lead, Nickel, Tin, and Zinc
9 Precious Metals Gold, Platinum, and Silver

10.5.3 Back-Testing Trading Rules

For each commodity price index, Table 10.11 shows the top 10 best trading
strategies in a back test over the period from January 1981 to December 2015.
The returns to these strategies are simulated assuming that the trader switch-
es to cash when a moving average rule generates a Sell signal. The following
observations can be made. First, for all commodity price indices, the best trad-
ing strategies significantly outperform the buy-and-hold strategy on a risk-
adjusted basis. Second, for all commodity indices but the Precious metals
commodity index, the best trading strategies are based on exploiting a very
short-termmomentum in commodity prices. Specifically, for virtually all com-
modity price indices the best trading strategy is the SMAE(2,p) strategy. Only
in trading the Precious metals commodity index the best trading strategies use
a relatively long size of the averaging window (from 7 to 14 months long). Our
third and final observation is that the SMAE(n, p) strategy is over-represented
in the list of the top 10 strategies for all commodity indices but the Precious
metals commodity index.

For all commodity price indices, the moving average strategy with short
selling the commodity (when a Sell signal is generated) significantly outper-
forms its counterpart where the trader switches to cash (these results are not
reported to save the space). Specifically, when short sales are allowed, in trading
all commodity indices the outperformance increases from 30% to 100% in
back-tests.
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Table 10.11 Top 10 best trading strategies in a back test

Rank Strategy � Strategy � Strategy �

Energy Beverages Oils & Meals
1 SMAE(2,1.5) 0.57 SMAE(2,1.5) 0.59 SMAE(2,2.5) 0.59
2 SMAE(2,1) 0.55 SMAE(3,0.75) 0.58 SMAE(2,2.25) 0.58
3 SMAE(3,0.25) 0.52 SMAE(2,1.25) 0.58 SMAE(2,2) 0.57
4 SMAE(2,1.25) 0.52 SMAE(2,0.75) 0.58 SMAE(2,1.5) 0.57
5 SMAE(2,0.75) 0.51 SMAE(4,0.75) 0.57 SMAE(2,0.5) 0.56
6 SMAE(2,2) 0.51 SMAE(2,1) 0.57 SMAE(3,3) 0.56
7 P-SMA(3) 0.51 SMAE(4,1.25) 0.56 SMAE(3,2.75) 0.55
8 SMAE(3,0.75) 0.50 SMAE(3,1) 0.56 SMAE(3,3.75) 0.54
9 SMAE(3,0.5) 0.49 SMAE(4,1) 0.55 SMAE(6,3) 0.54
10 SMAE(3,1) 0.48 P-SMA(7) 0.55 SMAE(2,2.75) 0.53

Grains Timber Raw Materials
1 SMAE(3,0.25) 0.80 SMAE(2,0.25) 0.63 MOM(2) 1.05
2 SMAE(2,0.25) 0.79 SMAE(2,0.5) 0.62 P-SMA(2) 1.05
3 SMAE(2,0.5) 0.79 SMAE(3,0.25) 0.61 SMAE(2,0.25) 1.04
4 SMAE(3,0.5) 0.78 MOM(2) 0.60 SMAE(2,0.5) 0.98
5 P-SMA(3) 0.76 SMAE(2,1.25) 0.60 SMAE(2,0.75) 0.97
6 SMAE(2,0.75) 0.75 SMAE(3,0.75) 0.59 P-SMA(3) 0.96
7 SMAE(3,0.75) 0.75 SMAE(3,1) 0.57 SMAE(3,0.25) 0.94
8 MOM(3) 0.72 P-SMA(3) 0.57 SMAE(2,1) 0.94
9 SMAE(4,0.25) 0.71 SMAE(3,0.5) 0.56 SMAE(3,0.5) 0.93
10 P-SMA(4) 0.71 P-SMA(2) 0.56 SMAE(4,0.25) 0.91

Fertilizers Base Metals Precious Metals
1 SMAE(2,0.25) 0.89 SMAE(2,1.5) 0.67 SMAC(4,12) 0.50
2 P-SMA(2) 0.88 SMAE(2,2.5) 0.66 SMAC(3,13) 0.48
3 P-SMA(3) 0.88 SMAE(3,2.75) 0.65 SMAC(3,14) 0.48
4 MOM(2) 0.87 SMAE(3,2.25) 0.63 SMAC(4,13) 0.48
5 SMAE(2,0.5) 0.85 SMAE(4,2) 0.63 SMAE(11,2.75) 0.48
6 SMAE(3,0.25) 0.77 SMAE(3,2.5) 0.63 SMAE(12,1.25) 0.48
7 P-SMA(4) 0.74 SMAE(2,1.75) 0.63 SMAE(7,3) 0.47
8 P-SMA(5) 0.73 SMAE(6,0.25) 0.61 SMAE(13,1.25) 0.47
9 SMAE(5,0.5) 0.72 SMAE(4,1.75) 0.61 SMAC(6,13) 0.46
10 SMAE(3,0.5) 0.72 P-SMA(6) 0.61 SMAE(8,2.75) 0.46

Notes Short sales are not allowed. � = SRMA − SRBH where SRMA and SRBH are the
Sharpe ratios of themoving average strategy and the buy-and-hold strategy respectively

10.5.4 Forward-Testing Trading Rules

In these forward tests the initial in-sample period is from January 1974 to
December 1983. Consequently, the out-of-sample period is from January
1984 to December 2015. Table 10.12 reports the outperformance delivered
by the moving average strategies in out-of-sample tests in trading commodity
price indices.The out-of-sample returns are simulated assuming that the trader
switches to cash when a moving average rule generates a Sell signal. The results
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Table 10.12 Outperformance delivered by the moving average trading strategies in
out-of-sample tests

Moving average strategy
Commodity index Statistics MOM P-SMA SMAC SMAE COMBI

Energy Outperformance 0.30 0.42 0.42 0.53 0.39
P-value 0.03 0.00 0.00 0.00 0.01

Beverages Outperformance 0.51 0.48 0.48 0.54 0.54
P-value 0.00 0.00 0.00 0.00 0.00

Oils & Meals Outperformance 0.48 0.48 0.48 0.40 0.38
P-value 0.00 0.00 0.00 0.00 0.00

Grains Outperformance 0.61 0.59 0.59 0.71 0.69
P-value 0.00 0.00 0.00 0.00 0.00

Timber Outperformance 0.55 0.52 0.39 0.51 0.44
P-value 0.00 0.00 0.00 0.00 0.00

Raw Materials Outperformance 1.00 0.96 0.96 0.95 0.92
P-value 0.00 0.00 0.00 0.00 0.00

Fertilizers Outperformance 0.80 0.62 0.62 0.79 0.75
P-value 0.00 0.00 0.00 0.00 0.00

Base Metals Outperformance 0.33 0.39 0.39 0.51 0.51
P-value 0.01 0.00 0.00 0.00 0.00

Precious Metals Outperformance 0.31 0.31 0.29 0.17 0.23
P-value 0.00 0.00 0.01 0.11 0.04

Notes BH denotes the buy-and-hold strategy, whereas COMBI denotes the ‘‘combined’’
moving average trading strategywhere at eachmonth-end the best trading strategy in a
back test is selected. The notations for the other trading strategies are self-explanatory.
The out-of-sample period from January 1984 to December 2015. Short sales are not
allowed. Outperformance is measured by � = SRMA − SRBH where SRMA and SRBH

are the Sharpe ratios of the moving average strategy and the buy-and-hold strategy
respectively. Bold text indicates the outperformance which is statistically significant at
the 10% level

of these forward tests suggest the following observations. First, for all com-
modity price indices, the moving average strategies statistically significantly
outperform the buy-and-hold strategy (at the 10% level). The only exception
is the outperformance of the SMAE rule in trading the Precious metals index;
this outperformance is statistically significantly positive at the 11% level. Sec-
ond, all moving average trading rules deliver about the same outperformance.
That is, there is little variation in the outperformance across different mov-
ing average rules. Third, for all commodity price indices, the out-of-sample
performance of the moving average trading rules increases from 20% to 50%
when we allow short selling a commodity index (these results are unreported
to save the space).
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To get deeper insights into the properties of the out-of-sample performance
of moving average trading rules in commodity markets, Table 10.13 reports
the detailed descriptive statistics of the buy-and-hold strategy and the out-of-
sample performance of themoving average trading strategies (with andwithout
short sales) in trading the Grains index. Observe that when short sales are
prohibited, the moving average strategy has significantly higher mean return
and lower risk as compared to those of its passive counterpart. In particular,

Table 10.13 Descriptive statistics of the buy-and-hold strategy and the out-of-sample
performance of the moving average trading strategies in trading the Grains commodity
index

Moving average strategy
Statistics BH MOM P-SMA SMAC SMAE COMBI

Short sales are prohibited
Mean returns % 1.81 8.40 8.19 8.19 9.36 9.25
Std. deviation % 14.59 9.73 9.77 9.77 9.75 9.77
Minimum return % −17.81 −9.39 −9.39 −9.39 −9.39 −9.39
Maximum return % 20.16 15.89 15.89 15.89 15.89 15.89
Skewness 0.42 1.41 1.38 1.38 1.46 1.46
Kurtosis 2.36 5.44 5.35 5.35 5.39 5.34
Average drawdown % 25.59 3.99 3.84 3.84 3.91 3.88
Average max drawdown % 25.59 10.06 9.38 9.38 8.26 8.26
Maximum drawdown % 57.09 20.07 20.89 20.89 17.85 17.85
Outperformance 0.61 0.59 0.59 0.71 0.69
P-value 0.00 0.00 0.00 0.00 0.00
Rolling 5-year Win % 92.62 92.31 92.31 92.62 92.62
Rolling 10-year Win % 100.00 100.00 100.00 100.00 100.00
Short sales are allowed
Mean returns % 1.81 14.98 15.02 15.02 16.67 16.32
Std. deviation % 14.59 14.19 14.19 14.19 14.08 14.10
Minimum return % −17.81 −19.08 −19.08 −19.08 −19.08 −19.08
Maximum return % 20.16 17.92 17.92 17.92 17.92 17.92
Skewness 0.42 0.11 0.11 0.11 0.12 0.13
Kurtosis 2.36 2.26 2.26 2.26 2.32 2.29
Average drawdown % 25.59 6.33 6.78 6.78 6.43 6.42
Average max drawdown % 25.59 15.55 15.86 15.86 14.03 14.33
Maximum drawdown % 57.09 28.68 28.68 28.68 24.73 27.77
Outperformance 0.92 0.93 0.93 1.05 1.02
P-value 0.00 0.00 0.00 0.00 0.00
Rolling 5-year Win % 94.46 92.92 92.92 93.23 93.23
Rolling 10-year Win % 100.00 100.00 100.00 100.00 100.00

Notes BH denotes the buy-and-hold strategy, whereas COMBI denotes the ‘‘combined’’
moving average trading strategywhere at eachmonth-end the best trading strategy in a
back test is selected. The notations for the other trading strategies are self-explanatory.
Outperformance is measured by � = SRMA − SRBH where SRMA and SRBH are the
Sharpe ratios of themoving average strategy and the buy-and-hold strategy respectively

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



10 Trading in Other Financial Markets 255

regardless of how the risk is measured, the riskiness of the moving average
strategy is substantially lower as compared with the riskiness of the buy-and-
hold strategy. For example, the standard deviation of returns of the moving
average strategy is by 30% lower than the standard deviation of returns of
the buy-and-hold strategy, whereas the maximum drawdown is lower by 60%.
Allowing short sales enhances the mean return of the moving average strategy
by approximately 40%. At the same time the standard deviation of the moving
average strategy increases to a value comparable to the standard deviation of
the buy-and-hold strategy; still the drawdowns of the moving average strategy
remain on a significantly lower level as compared to the drawdowns of the
buy-and-hold strategy. As in currency markets, the moving average strategy is
“high returns, low risk” strategy.
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Fig. 10.9 Top panel plots the bull-bear markets in the Grains commodity index over
the period from 1984 to 2015. Bottom panel plots the 5-year rolling outperformance
delivered by the combinedmoving average strategy (where short sales are not allowed)
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Figure 10.9, bottompanel, plots the 5-year rolling outperformance delivered
by the combined moving average strategy, whereas the top panel in this figure
plots the bull-bear markets in the Grains index. The graph of the rolling out-
performance suggests that even though the outperformance varies over time,
most of the time the outperformance remains positive. As a matter of fact, over
a 10-year horizon the outperformance was always positive over our historical
out-of-sample period (see Table 10.13, the estimates for the Rolling 10-year
Win %).

10.6 Chapter Summary and Concluding
Remarks

In this chapter we tested the performance of the moving average trading strate-
gies in different financial markets: stocks, bonds, currencies, and commodities.
The results of our tests allow us to draw the following conclusions:

• The moving average trading strategies performed best in commodity mar-
kets. The next best performance of these strategies was observed in currency
markets. The moving average strategies did not work in bond markets. It
should be noted, however, that our sample of historical data for both the
currencies and commodities was much shorter than that for both the stocks
and bonds. Therefore one can question whether the historical sample for
currencies and commodities is a truly representative sample fromwhich one
can draw reliable conclusions.

• In stock markets the outperformance produced by a moving average trad-
ing strategy depends on the type of the stock price index. Statistically
significant long-run outperformance was observed only in trading the
small stock index; yet over the recent past the trading in small stocks became
unprofitable. Trading in a well-diversified portfolio of large stocks seems to
produce a robust long-run outperformance. However, this outperformance
is not statistically significant at the conventional statistical levels.

• Outperformance delivered by a moving average trading strategy is very
uneven regardless of the type of financialmarket.Consequently, over a short-
run there is absolutely no guarantee for outperformance even in commodity
markets.

• Short selling strategy is beneficial mainly in the commodity markets. In
stock and bond markets the moving average strategy with shorts sales is
very risky and significantly underperforms the buy-and-hold strategy.
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• Regardless of the financial market, there is no advantage in trading daily
rather thanmonthly.Onlywith daily trading the small cap stocks the out-of-
sample performance of the moving average strategy was substantially better
than that with monthly trading. However, even in this case the profitability
of the moving average strategy disappeared in the recent past.

• Regardless of the financial market, the moving average strategy outper-
forms its passive counterpart basically over relatively long bear markets.
Conversely, over bull markets the moving average strategy underperform-
s the buy-and-hold strategy. In each market there are secular trends that
last from 10 to 30 years. Consequently, the moving average strategy might
underperform its passive counterpart even over a long-run. For example, in
stock markets the moving average strategy underperformed the buy-and-
hold strategy over the secular bull market in stocks that lasted from 1982
to 2001.

• Among all tested rules (MOM, SMAC, and SMAE), the SMAE rule (which
generalizes the P-SMA rule) usually performs the best in the majority of
markets and data frequencies. Therefore if the trader wants to use only a
single trading rule, the SMAE rule should be preferred.

In addition to the set of conclusions, the results of our tests suggest the
following practical recommendations for traders testing the profitability of
moving average trading rules:

• It is important to control the robustness of the historical outperformance
delivered by a moving average trading strategy. Just looking at the estimate
for the historical outperformance is not enough to jump to the conclusion
that the strategy is profitable, because this estimate is related to the average
outperformance over a rather long run. The outperformance is usually very
uneven in time, but it should be positive over bear markets. Most impor-
tantly, the trader should control that the outperformance is positive over
the most recent bear markets. This is needed because the market’s dynam-
ics can change and, as a possible consequence, the outperformance might
disappear.

• The profitability of moving average trading rules in a financial market can
be roughly evaluated by analyzing the historical dynamics of the bull and
bear cycles in this market. The quantity of major interest is the ratio of the
average bull market length to the average bear market length. If this ratio
is close to or less than 1 (as in the majority of currency and commodity
markets), the chances that the moving average rules outperform the buy-
and-hold strategy are very high. If, on the other hand, this ratio is close to
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or greater than 2, the chances that the moving average rules outperform the
buy-and-hold strategy are rather small. In this case the trader can only hope
that the moving average strategy provides a superior downside protection
during severe bear markets.

Our results also suggest the hypothesis that in a financial market there
might exist both a short- and a long-term trend in prices. As a matter of fact,
the hypothesis about simultaneous existence of several trends with different
durations is not new in technical analysis. For example, Charles Dow, who is
considered the father of modern technical analysis, developed a theory, later
called the Dow Theory, which expresses his views on price actions in the
stock market. Among other things, Dow Theory postulates that a market has
three movements: the “mainmovement” (primary trend), the “medium swing”
(secondary trend), and the “short swing” (minor trend). The three movements
may be simultaneous, for instance, a minor movement in a bearish secondary
reaction in a bullish primary movement.
The Dow Theory might be wrong, but the hypothesis about simultaneous

existence of several trends, or momenta, in asset prices might be fruitful all
the same. In finance, momentum denotes the empirically observed tendency
for rising asset prices to keep rising, and falling prices to keep falling. The
presence of different momenta in asset prices can be revealed, for example,
by examining the first-order autocorrelation function (AC1) of k-day returns.
To compute this first-order autocorrelation function, one can regress k-day
returns on lagged k-day returns (this idea is presented in the famous paper by
Fama and French 1988). Formally, one runs the following regression

k−1∑

i=0

rt+i = a(k) + b(k)
k∑

i=1

rt−i + εt , (10.1)

where rt denotes the natural log of the day t asset return and k is varied
between 1 and 250. The slopes of the regression, b(k), are the estimated
autocorrelations of k-day returns, AC1(k). If the prices follow a Random
Walk, there is no relationship between future and past returns and, conse-
quently, b(k) = 0.11 Evidence of momentum (mean-reversion) in asset prices
comes from the positive (negative) values of b(k). The larger the absolute value
of b(k), the stronger the momentum (or mean reversion if b(k) is negative) in
asset prices.

11However, if a sample is rather short, the estimate for b(k) is downward biased. Therefore, even if asset
prices follow a random walk, in short samples b(k) < 0 and decreases as k increases.
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Fig. 10.10 Empirical first-order autocorrelation functions of k-day returns in the fol-
lowing financial markets: the US/UK exchange rate, the large cap stocks, and the small
cap stocks

Figure 10.10 plots the empirical first-order autocorrelation functions of
k-day returns in several financial markets. These markets are: the US/UK
exchange rate, the large cap stocks, and the small cap stocks. The graphs in this
figure suggest the following observations. First, in the US/UK exchange rate,
there was only a short-term momentum over periods of 20–60 days. This says,
for instance, that if the US/UK exchange rate had increased (decreased) over
the course of the previous 30 trading days, this rate would tend to increase
(decrease) further over the subsequent 30 trading days. Second, in both large-
and small cap stocks there were two momenta: one short-term momentum
over periods of 5–30 days, and one long-term momentum over periods of
150–200 days. In large stocks, the long-term trend was much stronger than
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the short-term trend. Conversely, in small stocks the short-term trend was
much stronger than the long-term trend. We remind the reader that our test-
s revealed that, in the absence of transaction costs, in all stock markets the
best trading strategy in a back test was the MOM(2) strategy that exploits
the short-term momentum in stock prices. Even in the presence of realistic
transaction costs, the best trading strategy in small stocks exploited also the
short-term momentum. However, this short-term momentum ceased to exist
in stock prices; anyway the long-term momentum seems to remain.

Simultaneous existence of several trends has significant practical implica-
tions. Specifically, all existed forward tests of profitability of technical trading
rules are designed to find a single trend: the one that produces the best observed
performance (of a moving average strategy) in a back test. In the presence of
two trends of different durations, a profitable and robust trading strategy can in
principle exploit both trends. An example of such strategy can be found in the
paper by Glabadanidis (2017). The strategy in this paper is a sheer example of
an ad-hoc strategy presented without any justification, but in somemiraculous
way the strategy is able to produce a superior performance. We argue that the
superior performance of this strategy can be explained by the presence of both
a short- and a long-term momentum in stock prices.

Simultaneous existence of several trends with different durations is able to
explain a major controversy among technical traders about the optimal size of
the averaging window in each trading rule. Even for the famous P-SMA rule,
the popular advice on the length of the averaging window varies from 10 to 200
days (Kirkpatrick and Dahlquist 2010, Chap. 14). Apparently, different sizes
of the averaging window appear because of the existence of trends of different
durations; the duration of a trend varies over time and across different financial
markets.

Finally in this chapter we would like to present the key descriptive statistics
of returns on different financial asset classes: stocks, bonds, currencies, com-
modities, and cash. Table 10.14 reports the descriptive statistics of both the
buy-and-hold strategy and the moving average trading strategy (the combined
strategy simulated out-of-sample). As in the preceding chapter, we use 2-year
returns instead of monthly returns. This is because monthly returns are not
able to properly convey the idea of downside protection delivered by the mov-
ing average trading strategy. The descriptive statistics for all asset classes are
computed for the 25-year period from January 1986 to December 2011. The
reason for using such a short historical sample is because the data on curren-
cies start only from January 1973 (the period from January 1976 to December
1985 is used as the initial in-sample period for simulating the returns to the
moving average trading strategy).The different asset classes in this table exhibit
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either small or no correlation with each other; therefore they can be used for
efficient portfolio diversification across different asset classes.

Our first observation is that the moving average strategy does not work in
the bond markets. Specifically, the moving average strategy is less rewarding
and more risky than the corresponding buy-and-hold strategy in bonds. Even
though the sample period 1986–2011 covers a single secular bull market in
bonds, over a much longer historical sample from 1929 to 2011 the descriptive
statistics of the moving average strategy in trading bonds are virtually the
same. Our second observation is that in the stock market the moving average
trading strategy is less rewarding, but at the same time substantially less risky
when the risk is measured by the probability of loss and expected loss. Our
third observation is that in both the commodity and currency markets the
moving average trading strategy is both more rewarding and less risky than
the corresponding buy-and-hold strategy. Interestingly, in currency trading
the moving average strategy produced risk-free returns over the period 1986–
2011 when the risk is measured by the probability of loss and expected loss.
Besides, the risk-free returns to this strategy were substantially higher than the
returns on risk-free cash. Last but not least, the mean return to the moving
average strategy in currency trading is comparable to the mean return on the
passive bond investing. The moving average strategy in commodity trading
produced higher mean returns with lesser risk as compared to either passive or
active investment in stocks. However, the reader should be reminded that the
25-year sample period is probably not a long enough and truly representative
sample from which one can draw reliable conclusions about the performance
of moving average rules in both commodity and currency markets.
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11
Conclusion

Besides providing the in-depth coverage of various types of moving averages,
their properties, and technical trading rules based on moving averages, this
book offers two new contributions to the field of technical analysis of financial
markets. Specifically, this book uncovers the anatomy of market timing rules
with moving averages of prices and performs the objective tests of profitability
ofmoving average trading rules in different financialmarkets. In the concluding
chapter we would like to summarize the two main contributions and make
additional useful remarks regarding their significance.

11.1 Anatomy of Trading Rules

We considered the computation of the value of a technical indicator in all
trading rules and showed that this value is computed using the past n closing
prices including the last closing price

IndicatorTR(n)
t = f (Pt , Pt−1, . . . , Pt−n+1),

where TR denotes a trading rule, Pt−i denotes the period t − i closing price,
and f (·) denotes the function that specifies how the value of the technical
trading indicator is computed. In the original formulation, f (·) is a function
of one or multiple moving averages of prices.This function is sometimes rather
intricatewhichmakes it difficult to comprehendhowa given trading rule differs
from the others. In the absence of understanding how a trading rule works,
traders are more likely to have superstitious beliefs about the performance of
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complex trading rules; believing in “themore complex, the better” is a common
cognitive bias.

Our analysis demonstrates that the computation of a technical trading in-
dicator for every moving average trading rule can alternatively be given by the
following simple formula

IndicatorT R(n)
t =

n−1∑

i=1

wi�Pt−i . (11.1)

where �Pt−i = Pt−i+1 − Pt−i denotes the price change from t − i to
t − i + 1 and wi is the weight of price change �Pt−i in the computation
of a weighted moving average of price changes. Despite a great variety of
trading indicators that are computed seemingly differently at the first sight,
we found that the only real difference between the diverse trading indicators
lies in the weighting function used to compute the moving average of price
changes. The most popular trading indicators employ either equal-weighting
of price changes, overweighting the most recent price changes, a hump-shaped
weighting function which underweights both themost recent andmost distant
price changes, or a weighting function that has a damped waveform where the
weights of price changes periodically alter sign.

We derived several closed-form solutions for the weightswi of some trading
rules coupled with the ordinary moving averages. It is a daunting task to derive
closed-form solutions for the weightswi for all existing trading rules and types
of moving averages. Besides, in some cases it might not be possible to obtain a
closed-form solution for the weights. Fortunately, there’s a simple way around
this problem. Specifically, since our main result tells us that the value of a
trading indicator is a weighted average of past price changes, one can easily
recover the weights by computing the value of the technical indicator using
function f (·) and then regressing this value on the past price changes. That
is, after computing the series of IndicatorT R(n)

t , one can run the following
regression:

IndicatorT R(n)
t = α + w1�Pt−1 + w2�Pt−2 + . . . + wn−1�Pt−n+1 + εt .

The estimated regression coefficients wi represent the empirical weights of the
price changes in the computation of the given trading indicator.

Let us elaborate further on the alternative representations of our main result
on the anatomy of trading rules given by Eq. (11.1) and the intuition that
can be gained from these representations. Since the positive (negative) value of
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the technical indicator predicts a price increase (decrease) over the subsequent
period,1 Eq. (11.1) can be rewritten as

sgn (�Pt ) =
n−1∑

i=1

wi�Pt−i , (11.2)

where sgn(·) is the mathematical sign function. Consequently, every trading
rule can be interpreted as a predictive linear relationship between the weighted
sum of past price changes and the direction of the future price change.

If the prices are defined in terms of logarithmic prices, then the difference
between two successive log prices gives the logarithmic return. Formally, rt =
Pt − Pt−1, where P denotes the log price level and rt denotes the log return.
Therefore Eq. (11.2) can be rewritten as

sgn (rt+1) =
n−2∑

i=0

wi rt−i . (11.3)

Inwords, every trading rule can be interpreted as a predictive linear relationship
between the weighted sum of past (log) returns and the sign of the future
(log) return. Equation (11.3) is also approximately valid if one uses arithmetic
returns instead of logarithmic returns. To see this, let us divide the left- and
right-hand sides of Eq. (11.2) by Pt . This yields

sgn

(
�Pt
Pt

)
=

n−1∑

i=1

wi
�Pt−i

Pt
. (11.4)

The fraction �Pt
Pt

gives the arithmetic return from t to t + 1 which is denoted
by rt+1. Consider the fraction

�Pt−1

Pt
= �Pt−1

Pt−1 + �Pt−1
.

1For example, a positive value of a technical indicator generates a Buy signal for the next period. This Buy
signal tells the trader that the prices trend upward and this trend will persist in the near future. Therefore,
a Buy signal predicts that over the next period the price will increase.

https://t.me/TradersLibrary / https://t.me/Bibliotraders
https://telegram.me/joinchat/AAppPTu4_usdPMbRVMl9AQ



268 V. Zakamulin

If the prices are observed at a daily ormonthly frequency, the average one-period
change in the price is less than 1% which means that in the majority of cases
�Pt−1 � Pt−1. Therefore the given fraction can be closely approximated by

�Pt−1

Pt
≈ �Pt−1

Pt−1
= rt .

The same reasoning can be applied to all fractions �Pt−i
Pt

. Consequently, when
the returns are defined in terms of the ordinary (arithmetic) returns, we can still
rewrite Eq. (11.2) using returns instead of price changes. That is, Eq. (11.3) is
approximately valid if one uses arithmetic returns.

It is worth emphasizing once more that Eq. (11.3) is none other than the
predictive linear relationship between the weighted sum of the past returns and
the sign of the future return. If we want to estimate empirically the weights
in this predictive relationship, we can run the following regression (since n is
an arbitrary integer value, without the loss of generality and for simplicity, we
replace n − 2 with just n):

sgn (rt+1) = α +
n∑

i=0

wi rt−i + εt . (11.5)

A closer look at regression (11.5) reveals that this regression resembles many
models in modern empirical finance. The only difference is that in empirical
finance it is more common to predict the future return instead of the sign of
the future return. For example, the regression

rt+1 = α +
n∑

i=0

βi rt−i + εt (11.6)

is a familiar Auto-Regressive model of order n (AR(n) model) presented by
Box and Jenkins (1976). The simplest form of this models is AR(1) model that
has been extensively used in finance econometric literature over the course of
the last 40 years

rt+1 = α + βrt−1 + εt . (11.7)

In this model, if coefficient β is statistically significantly different from zero,
we have evidence of momentum (mean-reversion) when β > 0 (β < 0).
In the presence of (one-period) momentum, the MOM(2) strategy is usually
profitable, at least in the absence of transaction costs.
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To predict future returns, Jegadeesh (1991) used the following predictive
regression

rt+1 = α + β

n∑

i=0

rt−i + εt , (11.8)

which represents a specific form of regression (11.6) where all past returns are
equally weighted (in fact, this regression is virtually equivalent to theMOM(n)
trading indicator). Fama and French (1988), and many other researchers af-
terwards, used another predictive regression

n∑

i=1

rt+i = α + β

n∑

i=0

rt−i + εt . (11.9)

Whereas in regression (11.8) the sum of past n returns is used to predict the
next period return, in regression (11.9) the sum of past n returns is used to
predict the return over the subsequent n periods.

Overall, our result on the anatomy of moving average trading rules can
be re-stated in terms of a predictive linear relationship between a weighted
sum of past returns and the sign of the future return. This predictive linear
relationship resembles very closely the models that have been used in em-
pirical finance literature. Therefore our result allows us to reconcile modern
empirical finance with technical analysis of financial markets that uses moving
average rules, because both these approaches employ, in fact, the same type of
a predictive linear model. Much of the academic criticism of technical anal-
ysis is focused on the Efficient Market Hypothesis, which states, even in its
“weak form”, that financial asset prices follow a RandomWalk; therefore past
prices cannot be used to predict future prices. At the same time, financial re-
searchers have discovered evidence that prices do not follow a RandomWalk.
Specifically, prices exhibit momentum (see, for example, Jegadeesh andTitman
1993; Moskowitz et al. 2012) and mean-reversion (see, for example, Jegadeesh
1991, and Balvers et al. 2000). Consequently, if prices exhibit momentum,
then the trader can try to profit from using this momentum. Regarding the
technical trading with moving averages, it cannot be said that it is nonsense,
because the core idea in this market timing technique is to profit from either
momentum or mean-reversion which existence is documented in numerous
financial studies. Still, the critique that the technical trading with moving aver-
ages represents a pseudo-science is warranted, but only because the majority of
claims about profitability of themoving average trading rules are not supported
by objective scientific evidence. However, all these claims are testable and the
current challenge is to perform objective scientific tests of all these claims.
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11.2 Profitability of Trading Rules

We assessed the profitability of moving average trading rules in different finan-
cial markets: stocks, bonds, currencies, and commodities. Our results showed
a clear superiority of moving average trading rules in the currency and com-
modity markets.2 In most of currencies and commodities in our study, the best
performing strategy is based on using a relatively short-term momentum (or
persistency) in prices over horizon of one month. This corresponds very well
with the practical recommendations of using a 20- to 30-day moving average
of daily prices to profit in commodity markets, see Kleinman (2005). The ex-
istence of a short-term momentum in these markets should not be surprising.
Consider, for example, a commodity price which depends upon demand and
supply of this commodity and inflation rate. Both the demand and supply of
a commodity, as well as the inflation rate, are rather persistent over a short-
run. Similarly, an exchange rate depends upon supply and demand of currency,
interest rates in the respective countries, and some other macro-economic vari-
ables. All of these processes exhibit a short-term persistency. For example, the
interest rate in a country is regulated by the central bank; yet the central bank
revises the level of interest rates once in a few months only.

Our results suggest that moving average rules did not work in the bond
markets; therefore it is unlikely that these rules will work in the bond markets
in the future.The results for the stockmarkets are probably themost intriguing
among all our results. First of all, we did not find a clear-cut answer to the
question of whether the moving average trading strategy is superior to the
buy-and-hold strategy. Yet, our results are encouraging even though they are
in sharp contrast with those reported in the majority of previous studies where
the authors claim that “one can easily beat the market using moving averages”
and moving averages “allow one both to enhance returns and reduce risk at
the same time”. We found that the profitability of moving averages is highly
overstated, to say the least. In other words, moving averages do not offer a
quick and easy way to riches. On the other hand, moving average rules can
protect from losses when this protection is most needed. Specifically, during a
period of a severe market downturn when stock prices are trending downwards
over a relatively long run, the moving average strategy mandates to switch to
cash and, therefore, limits the losses. However, this downside protection comes
at the expense of lowering the returns during the good states of the market.

2It should be emphasized, however, that in our study we used the spot commodity prices and exchange
rates. In real trading, on the other hand, one uses futures contracts. We conjecture that in trading futures
contracts the results are about the same, yet our conjecture is nothing more than that at this point, and
will not be anything more until somebody validates it using historical data for futures prices.
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In our opinion, the moving average trading strategy represents a prudent
investment strategy for “moderate” and even “conservative”medium- and long-
term investors. However, our results reveal that not every stock market index
is suitable for timing the market using moving averages. The most robust
performance of the moving average trading rules is observed when the stock
market index represents a well-diversified portfolio of large cap stocks; a well-
known example of such index is the S&P 500 index.
The practitioners find it comforting to know that the popular strategy that

uses a 10-month SMA is close to the best performing rule for timing the
S&P 500 index. As compared with the MOM(n) rule, the performance of
the P-SMA(n) rule is much more robust with respect to the change in the
size of the averaging window, n. For example, when the value of n varies in
between 6 and 14, the performance of the MOM(n) rule changes much more
significantly than the performance of the P-SMA(n) rule. This is because the
duration of momentum in stock prices varies over time: in some periods the
best accuracy of forecasting the future returns is attained when one uses the
returns over the past 3–5 months, in other periods one needs to use returns
over the past 10–16 months. The MOM(n) rule employs equal weighting of
returns over n periods and therefore it is “tailored” to some specific duration of
momentum. As a result, theMOM(n) rule works well only when the duration
of momentum is comparable with the size of the averaging window. In con-
trast, the P-SMA(n) rule overweights the most recent returns and underweight
the most distant returns; this weighting scheme allows one to almost fully ex-
ploit the short-term momentum and account for long-term momentum. As
a result, the P-SMA(n) rule is able to exploit the momentum effect without
knowing its precise duration (a similar discussion can be found in Hong and
Satchell 2015).

Strictly speaking, our results say that the moving average trading strategy
had some advantages (reasonable downside protection without a significant
reduction in returns) in the past, even after accounting for suchmarket frictions
as transaction costs. A natural question that can be raised now is: Will the
moving average strategy show the same advantages in the future as in the past?
Whereas the past performance is not a guarantee of future performance, there
are several reasons that advocate that the advantages are likely to persist in the
future:

• The performance of the P-SMA(n) rule is robust to the choice of n, see the
discussion above.

• Our results on the performance of the moving average trading strategy can
be criticized, as a matter of fact, on the grounds that our out-of-sample tests
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are not truly out-of-sample. Indeed, a truly out-of-sample test requires us-
ing a new set of rules or/and a new dataset. These requirements are not met
in our tests: we used the existing set of rules and the dataset that overlaps to
a large degree with the datasets used in many other studies. However, the
superior performance of the 200-day (10-month) SMA rule was document-
ed already by Gartley (1935). Afterwards, the superior performance of this
rule after the period of the Great Depression was documented by Brock
et al. (1992). After that, this rule delivered superior performance during
the Dot-Com bubble crash of 2001–2002, see, for example, Faber (2007).
Last but not least, this rule again outperformed the buy-and-hold strategy
during the Global Financial Crisis of 2007–2008. The fact, that this rule
keeps outperforming its passive counterpart each time after the superiority
of this rule was documented in finance literature, is equivalent to a truly
out-of-sample test of this rule. It is worth emphasizing, however, that this
rule works mainly during a rather long bear market when prices decline
steadily but not sharply; this rule does not work when prices suddenly drop
as in October 1987.

• The momentum effect in stock prices is considered an “anomaly” in aca-
demic finance literature. The common criticism that can be raised in this
regard is that “once an apparent anomaly is publicized, only too often it dis-
appears or goes into reverse” (see, for example, Dimson and Marsh 1999).
Indeed, when many traders try to profit from an existing anomaly, it can
disappear or go into reverse. For example, when some type of stocks become
popular because they perform better than the rest of the market, and when
traders rash to buy these stocks, the return on these stocks, and hence the
performance, deteriorates. However, there are some anomalies that can be
strengthened when many traders want to profit from them. The momen-
tum anomaly is an example of such anomaly. This is because when many
traders sell (buy) the stocks when the prices go below (above) a 10-month
SMA, this massive sale (purchase) only reinforces the downtrend (uptrend)
in the stock prices.

• The momentum in financial asset prices is pervasive across a wide variety
of investment universes, geographies, and even asset classes, see Moskowitz
et al. (2012).

• Researchers advocate that the momentum effect has intuitive explanations
grounded in strong behavioral arguments: initial under-reaction and de-
layed over-reaction. Under-reaction usually results from the slow diffusion
of news, conservativeness, and the fact that price adjustment to new in-
formation takes some time. Over-reaction can be caused by positive feed-
back trading and over-confidence. Additional our own explanation for the
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momentum effect lies in the forecasting methodology and a self-fulfilling
prophecy of some forecasts.3 Specifically, traders usually forecast the future
price direction by extrapolating the price trend in the recent past. When
many traders strongly believe in their forecasts and start acting on them,
their trades (selling or buying pressure) ultimately fulfill the “prophecy”.
Our explanation for the momentum effect can account for the fact that the
duration of momentum varies over time. For example, in a calm market
when prices trend steadily one can identify the direction of the price trend
using just a few past prices. In contrast, in a turbulent market when prices
fluctuate wildly it is difficult to identify the direction of a price trend us-
ing a few past prices and therefore one needs to use a longer past period.
Consequently, our explanation predicts that the duration of momentum
depends on the market volatility: the duration of momentum should be
shorter (longer) when volatility is low (high). This property of momentum
was observed by Kaufman (1995) who suggested using an AdaptiveMoving
Average where the size of the averaging window is directly proportional to
the market volatility.
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price-change weighting function,
15

price weighting function, 12, 15
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estimation, 119
mean excess return, 113
Sharpe ratio, 115
Sortino ratio, 118

60/40 portfolio of stocks and bonds,
208, 210, 215

Price minus moving average rule, 58
Price-change weighting function, 15

momentum rule, 74
moving average change of direction

rule, 81

moving average conver-
gence/divergence rule,
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moving average crossover rule, 85
price minus moving average rule,
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Price weighting function, 15
Probability of loss, 203, 204,
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Risk-free (safe) asset, 111, 201
Risk-free rate of return, 108, 144,
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Risk measure
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expected loss, 208
probability of loss, 208
standard deviation, 114
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Secular bull and bear markets, 233
Self-fulfilling prophecy, 273
Sharpe ratio, 115, 156–158, 160,
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Short sale strategy
commodity markets, 255
currency markets, 246
stock markets, 160

Signal-to-noise ratio, 194, 242
Simple matching coefficient, 186
Simple moving average (SMA), 23
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smoothness, 24
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Small cap stocks, 226
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exponential moving average, 33
general weighted moving average,
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linear moving average, 28
simple moving average, 24

Sortino ratio, 118, 156, 157
Standard and Poor’s Composite index,

143, 144
Standard and Poor’s 500 index, 143
Structural break analysis, 146, 216
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Technical analysis, 3
Technical trading indicator, 55

alternative representation, 91, 266
momentum rule, 56
moving average change of direction
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moving average conver-

gence/divergence rule,
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moving average crossover rule, 60
as a predictive linear model, 268
price minus moving average rule,
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Testing trading rules

back (in-sample) test, 130
forward (out-of-sample) test, 133
walk-forward test, 135

Trading signal generation, 56
moving average envelope, 67

Transaction Costs, 105
bid-ask spread, 105
bond markets, 107
brokerage fees (commissions), 105
for large investors, 105
market impact, 106
for small investors, 106
stock markets, 107

Treasury Bill rate, 144
Trend following, 4
Triangular moving average (TMA),

35
average lag time, 36

Triple exponential moving average
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Triple exponential smoothing, 37
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Value stocks, 225
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Walk-forward test, 135
Whipsaw trades, 65
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Zero lag exponential moving average
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